
    
1 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

Toward traceability model between 
ISO/IEC 29110 artefacts and agile 
process 
 
Waraporn Jirapanthong 
 
 
College of Creative Design and Entertainment Technology, Dhurakij Pundit University, Bangkok 
10210, Thailand 

 
 

Corresponding author: 
Waraporn Jirapanthong 
waraporn.jir@dpu.ac.th  

 
 

Received: 22 February 2023 
Revised: 23 May 2023 
Accepted: 5 July 2023 

Published: 1 December 2023 
 
 

Citation:  
Jirapanthong, W. (2023). 

Toward traceability model 
between ISO/IEC 29110 

artefacts and agile process. 
Science, Engineering and 

Health Studies, 17, 23040006. 
  

ABSTRACT 
 
This paper presents the efficacy of the traceability model in the development of artefacts 
related to pre-defined activities in the ISO/IEC 29110 process and ones related to agile 
process. This efficacy is demonstrated through a study of very small entities (VSEs) in 
Thailand who applied a development script based on the traceability model for various 
software projects. Six VSEs, with their respective software development projects, 
participated in the study with comparable time constraints and budgets. The VSE 
development teams utilized the traceability model to establish connections between the 
artifacts of the agile process and the ISO/IEC 29110 standard. The results show the 
potential benefits for VSEs in the application of the traceability model in such processes 
and what the teams learned from their participation. Each team’s productivity differed 
only slightly. The average figure of productivity with the traceability model was 1.416. 
However, the average figure of productivity without the traceability model was 1.3045.  It 
is found the agile process can be facilitated and less effort by applying the traceability 
model.  
 
Keywords: agile; ISO/IEC 29110; traceability; VSEs; software process 
  
 
 

1. INTRODUCTION                                    
 
Software processes typically include planning, 
requirements specification, software analysis and design, 
software development, testing, and deployment. The 
common challenges during deployment are data 
management, system integration, inadequate planning, 
resistance to change, lack of customer engagement, and the 
rapid changing of digital technology (Barry et al., 2002; 
Rodríguez et al., 2012). Software deployment often takes 
months, and project teams may spend considerable time 
after software deployment in order to provide long term 
software maintenance and support. 
       In general, the implementation time of a software 
project depends on the type, requirement scope, and 
technologies used for the project. It may take only one to 
nine months with an average time of 4–12 months. Based 

on our experience, the implementation time for different 
software projects varies based on project size. For 
example, a very small software project with basic features 
can take less than 2 months, a small software project can 
take 2–4 months, and an average sized software project 
can take 4–6 months. However, changes in marketing and 
customer trends can have a significant impact on software 
features and requirements which in turn lengthens the 
time of project development (Gupta et al., 2016; Vellanky, 
2007). This is due to the correlation of team size, team 
effort, implementation time, and team productivity.  
       According to Barry et al. (2002) and Rodríguez et al. 
(2012), team size, effort, productivity and project 
implementation efficiency are the driving factors which 
determine the meeting of software development deadlines. 
Furthermore, it is found that meeting customer requirements 
poses a major challenge to meeting development deadlines. 

Science, Engineering and Health Studies 
https://li01.tci-thaijo.org/index.php/sehs   

ISSN (Online): 2630-0087 
  

 Research Article 

mailto:waraporn.jir@dpu.ac.th


Toward traceability model between ISO/IEC 29110 artefacts and agile process 

 
2 

This is due to potential changes of requirements, which can 
include redevelopment. Such factors impact project planning 
including milestones, deliverables, and budget.  
       Generally, the delivery and deployment of software 
projects are a complicated endeavor. They require a 
specific set of tools, technologies, and skills as well as 
specific configurations for particular systems. Moreover, 
there is a need for standards and formal processes to 
support the software development life cycle.  
       A software process model typically consists of many 
phases which are limited by resources. An example of a 
traditional software process model is named waterfall. It is 
suitable for software projects with stable and complete 
software requirements requirements. Such development 
parameters, coupled with the waterfall model, lead to the 
successful progress of software projects. However, the agile 
model becomes a more attractive approach when variables 
are less stable due to team collaboration, customer 
involvement, and changes in requirements. The agile method 
more easily meets the needs of project flexibility and rapidly 
responds to unplanned changes. Scrum, a methodology 
within the Agile framework, is widely utilized due to its 
responsiveness and flexibility. The agile framework includes 
the activities of team collaborations like daily Scrum 
meetings; of continuous software integration, such as sprint 
backlogs; and of customer involvement, for instance rapid 
customer feedback. 
       In addition, the process of standardizing software varies 
depending on the parties involved in the standardization 
(Humphrey, 2005). The most common and practical are the 
international ISO/IEC standards. The International 
Organization for Standardization (ISO) and the International 
Electrotechnical Commission (IEC) develop standards for 
worldwide application. They have also formed the Joint 
Technical Committee (JCT1) which is divided into 
subcommittees (SC) and working groups (WG). Each WG is 
charged with the development of standards in a specialized 
area. ISO produces two main types of documents: 
International Standard (IS) and Technical Reports (TR). 
There are many available standards. As a result, it becomes 
difficult for development teams to choose one based on 
practicality. This study focuses on the implementation of the 
ISO/IEC 29110 standard (International Organization for 
Standardization, 2015a, 2015b, 2016) in conjunction with 
the agile process. Although, some authors (Laporte and 
O’Connor, 2016; Suteeca and Ramingwong, 2016; Alvarez 
and Hurtado, 2014; Boucher et al., 2012; Laporte et al., 2016; 
Castillo-Salinas et al., 2020; Buchalcevova, 2021) have 
researched the implementation of the international standard 
of software process i.e., ISO/IEC 29110 for software agile 
processes, issues and impracticality still exist. In particular, 
there are impracticalities with relation to Thai VSEs and their 
use of ISO/IEC 29110 for software agile processes. Based on 
Jirapanthong (2018, 2019), this study focusses on the 
characteristics of ISO/IEC 29110 standard and the agile 
process and identifies the key artefacts related to two areas 
i.e. project management, and system implementation. Based 
on the study, a traceability model is proposed between 
artefacts from ISO/IEC 29110 and the agile process. The 
study was conducted to document the experiences of the 
approach.  
 
1.1 Agile process 
Agile (Schön et al., 2019; Erickson et al., 2005; Dingsøyr et 
al., 2012) is a project management methodology based on 

an iterative approach. It focuses on the delivery of product 
development via self-organizing teams which can respond 
to change effectively. The agile manifesto consists of 4 core 
values: i) individuals and interactions over processes 
and tools, ii) working software over comprehensive 
documentation, iii) customer collaboration over contract 
negotiation, and iv) responding to change over following a 
plan. Moreover, the agile manifesto includes 12 principles: 
i) customer experience, ii) embracing change, iii) continuous 
delivery, iv) collaboration, v) transparency, vi) high 
bandwidth communication, vii) working software, viii) 
individuals, ix) sustainability, x) just in time, xi) self-
organization, and xii) retrospective.  
       There are two popular frameworks used to implement 
agile software development; Scrum (Hossain et al., 2009) 
and Kanban (Anderson, 2010). For the Kanban framework, 
real-time communication of capacity and full transparency 
of work is required. Work items are represented visually 
on a Kanban board, allowing team members to see the state 
of every piece of work at any time. Work in progress (WIP) 
sets a limit on the maximum amount of work that can exist 
in each status of a workflow. Through this visualization, 
teams can identify inefficiency in their workflow. The key 
steps for the Scrum framework are as follows:  
       i) Project planning: The Scrum master and product owner 
plan the primary list of work that needs to be developed. This 
list, named the product backlog, encompasses features, 
requirements, enhancements, and fixes. The product backlog 
is constantly reprioritized due to changes.  
       ii) Roadmap planning: The product roadmap is an 
action plan for how a product will develop over time. The 
product roadmap provides the framework for a given 
team’s work. It includes a daily action plan for each team. 
This allows large companies with many agile teams to plan 
and follow the same product roadmap. The roadmap 
presents the market segments, product values, and project 
constraints. All project members are able to access and 
view the roadmap in order to understand the objectives 
and timeline of the whole project.  
       iii) Release planning: A high-level plan for multiple 
sprints, three to twelve iterations for example, is created 
during release planning. It is a guideline that reflects 
expectations about which features will be implemented 
and when they will be completed. It also serves as a base to 
monitor progress within the project. Releases can be 
deliveries done during the project or the final delivery at 
the end. A Scrum master creates a release plan based on a 
prioritized and estimated product backlog, the efficiency of 
teams, and other conditions.  
       iv) Sprint planning: A sprint plan is a concrete plan for 
a Scrum team. It defines what exactly will be delivered to 
the customers and how products can integrate with 
available releases. The plan provides details of tasks that 
the software project team must tackle. 
       v) Sprint execution: Sprint execution is the work the 
Scrum team performs during each sprint to meet the sprint 
goal.  
       vi) Sprint review and retrospective: The sprint review 
is a meeting at the end of the sprint. The software project 
team, consisting of the members of the Scrum team, the 
Scrum master, and the project manager, meet with the 
product owner and the stakeholders during the sprint and 
exchange their work experiences. The product owner will 
update the team regarding what has been done or not. 
Moreover, they will discuss problems which led to the 



Jirapanthong, W. 

   
3 

failure of sprint objectives which should be improved for the 
next sprint. The sprint retrospective is a meeting that occurs 
immediately after the sprint review. Team members identify 
good practices which led to sprint goals being achieved. 
The sprint retrospective is aimed to improve the team’s 
development process. 
       The main artefacts from the agile methodology are the 
burndown chart and the task board. The burndown chart 
is used to present the team’s progress. It shows the outline 
of user stories in accordance with the schedule. It also 
conveys the work rate and performance of the team.  The 
chart is kept updated during a sprint. The burndown 
diagram represents in particular the product and the 
sprint backlog that will be achieved. The task board is used 
by each project team member. The board presents tasks 
and dependencies between tasks and the team members 
can use the board as a team memo to update the 
completion of tasks. The board can be used by a project 
team to assign and track tasks, to share information, and 
visualize task dependencies and bottlenecks. The flow of 
individual tasks can also be displayed.  This includes tasks 
that are in progress, finished tasks, and upcoming tasks 
that may be in a backlog. The tasks can be represented by 
cards and arranged within a few columns on a board. 
Currently, there are several software tools to support the 
task board for agile project development as the tasks can 
be elaborated into multiple levels. The task board can be 
used to predict and avoid problems, increase effectiveness, 
and improve production. 
 
1.2 ISO/IEC 29110 
ISO/IEC 29110 (International Organization for 
Standardization, 2015a, 2015b, 2016) is aimed at supporting 
SMEs (Small and Medium Enterprises) in the assessment and 
improvement of their software processes. The key objective 
of ISO/IEC 29110 is to establish a standard which provides a 
set of software profiles for supporting SMEs. The standard 
includes complete and extensive processes which are 
separated into four profile levels: entry profile, basic profile, 
intermediate profile, and advanced profile.  The basic profile 
is applicable for SMEs to improve their working process. In 
particular, it is suitable for very small units including no more 
than 25 staff members per project team. According to this 

profile, there are two defined processes in a software 
development project. Each process includes defined tasks 
and work products. The defined processes are project 
management (PM) and software implementation (SI). The 
activities of the project management process are project 
planning, project plan execution, project assessment and 
control, and project closure. The activities of software 
implementation process are software implementation 
initiation, software requirements analysis, software 
architectural and detailed design, software construction, 
software integration and tests, and product delivery. There 
are a total 50 tasks under all activities which involve 22 
defined work products. Some tasks are related to the creation 
of new work products and some are related to updating 
existing ones. As shown in Figure 1, the project management 
process includes four activities and customer involvement. 
The implementation process is then linked to the 
consequence of the project management process. The 
standard does not define the specific methods of software 
development, it only provides the basic profile of software 
development activities.  
       Though the standard aims to provide a set of best 
practices and guidelines for improving the quality of the 
software process, the standard does not prescribe a 
particular software development methodology. In practice, 
software development teams in small companies have some 
difficulties. For example, they may have an issue selecting 
software tools and development methods which conform 
with the standard. Some studies (Laporte and O’Connor, 
2016; Suteeca and Ramingwong, 2016; Alvarez and Hurtado, 
2014; Boucher et al., 2012; Laporte et al., 2016; Castillo-
Salinas et al., 2020; Buchalcevova, 2021) present case studies 
on the compliance of software process standards. They also 
describe the pros and cons for the use of standards. In 
Thailand, there are a large number of very small-sized 
software companies. They apply different software methods 
and tools to implement software projects. They also 
experience the difficulties of following the standard. 
According to studies conducted on the software development 
of Thai organizations (Waewseangsang and Khongmalai, 
2014; Mongkolnam et al., 2009; Suwanya and Kurutach, 
2008), most Thai organizations do not focus on the standard 
of ISO/IEC 29110. 

 
 
Figure 1. ISO/IEC 29110 basic profile processes and activities (from www.iso.org/standard/51154.html) 
  



Toward traceability model between ISO/IEC 29110 artefacts and agile process 

 
4 

2. MATERIALS AND METHODS    
 
2.1 ISO/IEC 29110 activities and artefacts 
According to ISO/IEC 29110, the artefacts (work products) 
are created, updated, and used in pre-defined activities. As 
shown in Table 1, artefacts created during an activity can be 
related to other activities. For example, project plans, 
meeting records, verification results, and project repositories 
are created during project planning. The project plan is 
updated during project execution and applied during 
software implementation initiation. Some artefacts are 
produced periodically (verification results, validation results, 

and meeting records), some are produced conditionally 
(change requests) and some created and updated in many 
activities (project repository and traceability record). 
Software artefacts (requirements specification, software 
design, software, software components, test cases, and 
reports) are produced and updated during the activities of 
the software implementation process. Some artefacts 
(change request, correction register, and progress status 
record) are collected during the software process, some are 
used as input for other activities, and others (maintenance 
documentation, software configuration, verification results, 
and acceptant record) are completed at the end of process. 

 
Table 1. ISO/IEC 29110 activities and related artefacts 
 

Activities Artefact created Artefact updated Artefact as input 
Project planning Project plan  State of work 

Meeting record   
Verification results   
Project repository   

Project plan execution Project repository backup Project repository Change request 
Meeting record Project plan Correction register 
Progress status record Progress status record  

Software implementation 
initiation 

  Project plan 

Software requirements 
analysis 

Change request Validation request Project Repository 
Requirements specification   
Verification results   
Software user documentation   

Software architectural and 
detailed design 

Software design  Requirements specification 
Change request   Product repository 
Test cases and test procedures   
Verification results   
Traceability record   

Software construction Software components Traceability record Software design 
Test report Test cases and test procedures Project repository 
Product operation guide Software user documentation  
Software configuration   
Software   

Project assessment and control Change request  Progress status record 
Correction register  Project plan 

Project delivery Maintenance documentation  Software configuration Project repository 
Verification results   

Project closure Acceptance record Software configuration Project plan 

2.2 Framework of agile process with ISO/IEC 29110 
standard 
This study’s approach focuses on the agile Scrum process.  
As shown in Table 2, artefacts created during an activity 
can be related to other activities. For example, project plan 
and product backlog are created during project planning. 
The project backlog is then used during roadmap and 
release planning and updated during sprint planning due 
to a change or feedback. Feedback is reviewed and used for 
subsequent activities. According to the agile process, some 

activities occur iteratively. Some artefacts are continuously 
updated like the burndown chart: some are produced 
periodically such as daily meeting records and release; and 
some are produced conditionally through feedback and 
change. 
       As shown in Figure 2, some artefacts are created during 
an activity and repeatedly used for subsequent activities.  
The activities of agile process are iteratively performed 
until the product is complete. 
 

 
 
 



Jirapanthong, W. 

   
5 

Table 2. Activities and artefacts in agile Scrum process
 

Activities Artefact created Artefact updated Artefact as input 
Project planning Project plan  User stories 

Product backlog   
Roadmap planning Features  Project plan 

Roadmap  Product backlog 
Release planning Burndown chart Roadmap Product backlog 

Release plan Features Feedback 
Sprint planning Spring backlog Product backlog  

Burndown chart  
Sprint execution Daily meeting record  Feedback 

Release   
Sprint review Review record Product backlog Feedback 

 Burndown chart Release plan 

Figure 2. Agile process with related artefacts

       The mapping model of agile process with ISO/IEC 
29110 standard are identified in Table 3. It shows the 
relationship between artefacts produced during sprint 
execution and ISO29110 work products.  For example, a 
work product, labeled acceptance record, produced during 
the ISO29110 activity of project closure is related to 
release and to the final product produced during the agile 

activity of sprint review. Similarly, progress status record 
created and updated during the ISO29110 activities 
(project plan execution, and project assessment and 
control) is related to the burndown chart created during 
the agile activity (sprint review, sprint planning, and 
release planning). 

 
Table 3. The traceability model of related artefacts in ISO/IEC 29110 and agile Scrum activities  
 

ISO 29110 work products [activities in ISO/IEC 29110] Related artefacts in agile approach  
[activities in agile approach] 

Acceptance record [project closure] Release, Final product [sprint review] 
Change request [project assessment and control], [software 
requirements analysis], [software architectural and detailed 
design] 

Sprint backlog [Sprint review], [release planning] 

Correction register [project assessment and control] Meeting record [daily meeting] 

Meeting record [project plan execution] Meeting record [sprint meeting], [daily meeting] 
Progress status record [project plan execution], [project 
assessment and control] 

Burndown chart [sprint review], [sprint planning], [release 
planning] 

Project Plan [Project planning], [Project plan execution] Product backlog, Sprint backlog [Project planning], [Roadmap 
planning], [Release planning], [Sprint planning] 



    
6 

Table 3. (Continued) 
 

ISO 29110 Work products [activities in ISO/IEC 29110] Related artefacts in agile approach  
[activities in agile approach] 

Project repository [project planning], [project plan execution] Repository [project planning], [roadmap planning], [Release 
planning], [roadmap creating] 

Project repository backup [project plan execution] Backup [sprint planning] 

Requirements specification [software requirements analysis] User stories [roadmap planning], [release planning], [sprint 
planning] 

Software [software integration and test] Release [sprint execution] 

Software components [software construction] Release [sprint execution] 

Software configuration [product delivery], 
[project closure] 

Software configuration [sprint execution] 

Software design [software architectural and detailed design] Sprint backlog [sprint execution] 

Software user documentation [software requirements analysis], 
[software integration and test] 

Release [sprint execution] 

Statement of work, test cases and test procedures [software 
architectural and detailed design], [software integration and test] 

User stories, unit and integration test result [sprint planning] 

Test report [software integration and test] Unit and integration test result [sprint execution] 

Traceability record [software architectural and detailed design], 
[software construction], [software integration and test] 

Roadmap, user stories, product backlog, release  
[sprint planning] 

Validation results [software requirements analysis] Feedback [daily meeting], [sprint execution] 

Verification results [project planning, software requirements 
analysis], [software architectural and detailed design] 

Feedback, meeting record [project meeting], [sprint meeting], 
[sprint review] 

Product operation guide [software integration and test] -, [sprint execution] 

Maintenance documentation [product delivery] -, [sprint execution] 

2.3 Statistical analysis 
The research objectives focused on the challenges of 
implementing the ISO/IEC 29110 standard with the agile 
process. The research encompasses two parts. The first part 
is to study an ecosystem aligned with a software lifecycle. The 
factors related to drive the process in the ecosystem are 
identified in the study. The factors are then compiled in the 
form of evaluation measures. The metrics include the policies 
and practices used by the software team leaders. The second 
part is to evaluate the overall performance of the ecosystem. 
The scope of performance is quantified using success factors. 
The scores of the factors or sub-factors are accumulated. The 
research also compares such factors with other ecosystems 
at similar lifecycle phases.  
       For the first part, there are the following steps: 
       1. Software projects and teams 
       VSEs in Thailand (Bangkok) contributed to this research. 
The VSEs aimed to improve their software process 
compliance with the ISO/IEC 29110 standard proposed in 
this study. The study identified the practices of the standard 
and how to meet the success of software development. The 
team’s knowledge, distributed resources, and deployed 
software processes were recorded. The study comprised six 
software project teams in which members had equal skills. 
The project teams were assigned different projects and asked 
to drive the software process in alignment with agile 
methodology. 
       The six software projects were from different VSEs with 
different characteristics, i.e., the level of maturity, the 
professionals, the professional community and society, and 
the corresponding business area. Basically, the software 
teams had a working experience and knowledge of software 
engineering. They had experience developing software 

systems and delivering software products; however, their 
software project was driven by various constraints and 
factors, e.g., customer requirements, business strategies, and 
digital enhancement. The teams did not fully apply the agile 
framework during development due to such constraints and 
factors. Their project progress was then not predictable or 
repeatable; nor were good practices identified. All six 
software projects were established in similar timelines. Each 
team member was assigned and responsible for tasks which 
were driven by the agile framework e.g., system analyst, 
project manager, and software developer. All projects had 
the limitation of time, budget, and resources. In particular, 
the projects had to be completed within 4 months and include 
2.5 person-months. Moreover, the teams were requested to 
implement the projects under the agile framework and be 
compliant with the ISO/IEC 29110 standard. 
       2. The traceability model of related artefacts in ISO/IEC 
29110 and agile Scrum activities 
       Development teams were encouraged to discipline 
themselves with the ISO/IEC 29110 standard and apply the 
traceability model, as described in the previous section, 
during the agile process. 
       One of the contributions was to identify both explicit and 
implicit relationships between software artefacts in the agile 
process. Templates for ISO/IEC 29110 work products were 
also provided. In particular, the ISO/IEC 29110 toolkit, which 
includes a set of work product templates was prepared and 
utilized by development teams.  
       The second part contained, the following steps: 
       1. Execute experimental plan.  
       In this step, each team developed their own software 
project under planned budgets and constraints. The profile of 
each team and project is shown in Tables 4. The VSEs had 



Jirapanthong, W. 

   
7 

different business goals and objectives. Basically, the range of 
software projects covered in this study were different. The 
number of team developers refers to the human resources of 
each team and to those who had similar skills. The team’s 
work experience number shows the average working years 
of each team in the software engineering field.  
       However, our approach is to perform process 
improvement and to assist teams in their alignment with 
project management methodologies to overcome the 
differences of software projects and enable them to apply the 
standard. As discussed with the project teams, the key factors 
in helping teams successfully transition to agile Scrum 
method were identified:  
       a) Every team needs members who contribute 
individually as experts, with light supervision and guidance. 

Smaller lean teams or start-ups are suitable for this work 
environment.  
       b) Each team must set expectations and train their team 
members to ensure that they understand how agile scum 
works, and what benefits the standard will have.  
       c) The VSEs should prototype the implementation of the 
standard and the agile Scrum methodology. They should not 
manage too many large changes or implement changes too 
quickly. The successful process can then be deployed to the 
rest of the company’s projects.  
       According to the key factors identified, a prototype plan 
was created with six teams and projects. As shown in Table 
4, team members acting as experts for each contribution 
were organized and project prototypes were created.

 
Table 4. Developer team A’s profile 
 

Team A B C D E F 
VSE’s business 
goals and 
objectives 

Be an academic 
institute; offer 
academic 
services 

Be a 
government 
sector; 
support 
information 
systems 
within the 
organization 

Start up; 
innovative and 
research 

Start up; be 
funded by NIA 

A software 
house; web 
application 
development 

A software 
house; web 
application 
development 

Domain of  
software  
product 

Online learning 
system 

Incident 
management 
system 

Logistic 
management 
system for coffee 
shops 

Online learning 
system 

Health 
information 
system for a 
hospital 

Information 
system for a HR 
activities 

No. of team 
developers 
(persons) 

4 3 2 6 3 2 

No. of team’s 
working 
experience 
(years) 

6 7 2 2 8 2 

Time budget 2 months 3 months 3 months 4 months 2 months 6 months 

Number of 
stakeholders 
(party) 

3 (users, product 
owner, developer 
team) 

2 (users, 
developer 
team); note 
that the team 
is the product 
owner 
themselves. 

2 (users, 
developer team); 
note that the 
team is the 
product owner 
themselves. 

5 (users, 
product owner, 
funder, domain 
expertise, 
developer 
team); note that 
the project is 
funded by NIA 

3 (users, 
product owner, 
developer 
team) 

5 (users, 
product owner, 
developer 
team) 

Number of staff 
in each role of 
the project 

Project manager 
& Scrum master: 
1 

Project 
manager & 
Scrum 
master: 1 

Scrum master & 
requirements 
engineer: 1 

Project 
manager: 1 

Project 
manager & 
Scrum master: 1 

Project 
Manager & 
Scrum Master: 1 

Requirements 
engineer: 1 

Requirements 
engineer & 
software 
designer &  
software 
developer & 
software 
tester: 2 

Project manager 
& software 
designer & 
software 
developer & 
software tester: 1 

Scrum master & 
requirements 
engineer: 1 

requirements 
engineer &  
software 
designer & 
software 
developer: 1 

requirements 
engineer &  
software 
designer & 
software 
developer: 1 

Software 
designer & 
software 
developer & 
software tester: 2 

  Software 
designer: 1 

  

   Software 
developer & 
software tester: 
3 

  



    
8 

       Quantifying performance with success factors and 
metric identified factors and metrics for evaluating the 
results of the software projects. The performance of the 
software projects is quantified and scaled in terms of 
success factors. The success factor scores represent 
performance, human resource management, team 
experience, team engagement, and agile experience.  
       However, this research focused on the study of 
implementing the ISO/IEC 29110 standard effectively and 
practically. The research metrics were time and effort 
spent to satisfy user requirements. In particular, the 
productivity of each project team was measured. The 
parameters of software projects such as project size, 
requirements, stability, time, budget, resources, and team 
experiences were all recorded (Rodríguez et al., 2012; 
Kitchenham and Mendes, 2004; Wagner and Ruhe, 2018). 
In this research, the variables were as follows: a) the 
development teams’ business goals and objectives and b) 
the domain of software products. A list of tasks which can 
be defined by day (8 working hours) were defined.  The 
variables, i.e., task phase, individual profile, or project 
state were defined. In this research, a task refers to a job 
that requires time to be delivered in order to achieve the 
task’s objectives and the default time was set to five hours. 
Otherwise, tasks were considered delivered within a day 
(set to eight hours). We then identified the productivity of 
each team was identified using Equation 1. 
 

 Productivity =
Planned Effort ÷ 5

Actual Effort
× 8    (1) 

 
Whereas planned effort for each task was accumulatively 

measured and compared with actual effort for each task, 
the planned effort was estimated by working hours for 
each task. The milestones and project phases were also 
estimated and related to the tasks in the project plan. The 
actual effort was progressively measured during 
implementing tasks.   
       Six VSEs agreed to implement the ISO/IEC 29110 
standard. The software projects of each team were 
considered to be of the same size, but in different areas. 
The number of people in the development teams are 
relatively equal (2–6 people). However, the business goals 
and objectives of each VSE were different. Table 4 shows 
the characteristics of the VSEs.  
 
  
3. RESULTS AND DISCUSSION 
 
According to the research, the software teams created the 
software products. Each team was asked to perform 
software development activities under the agile process in 
accordance with the ISO/IEC 29110 standard. The scenario 
was created based on the typical environment of a VSE 
ecosystem. Some activities involved many types of 
documents. Therefore, the teams were asked to follow a 
development script. The script encompassed the core 
activities of the ISO/IEC 29110 standard and agile process. 
The software teams participating in the research were 
asked to perform the following tasks during the 
development script: i) application of software tools to 
create related documents; and ii) enabling traceability 
between artefacts. 

 
Table 5. Software project measurement 
 

Team LOC FP Planned effort 
(days) 

Actual effort 
(days) 

Productivity 

Team A 61591 12 90 118 1.22 
Team B 14471 4 90 92 1.57 
Team C 8326 3 90 104 1.38 
Team D 77543 16 90 125.2 1.176 
Team E 35120 5 90 94 1.53 
Team F 13580 4 90 89 1.62 

 
       In addition, many documents were created such as 
software design documents, software specifications, 
source code, and team management. The number of each 
type of documents was measured. For example, the 
number of defects from the review of design and code 
artefacts, the number of pages or lines of code from the 
coding phase, the number of operational configurations 
from the testing phase, and the entities of team size and 
average team experience were collected. The size 
measurement of software products involved two aspects: 
(a) line of code (LOC) and (b) function point (FP). As shown 
in Table 5, the number of LOC created by each team were 
61,591, 14,471, 8,326, 77,543, 35,120 and 13,580 
respectively. Although the teams followed the 
development script based on the agile process, they 
implemented production phases on different platforms 
e.g., the web, Android, and iOS. However, the numbers of 
each software product’s FPs were different depending on 
the requirements. Moreover, the quality of software 

products were measured in terms of maintainability 
attributes. The attributes were coding effort, design effort, 
percentage of modules changes, classes changes, and 
classes added. Table 5 shows measured the productivity of 
each team. As described in the previous section, the 
productivity was calculated based on planned effort, actual 
effort, and an 8-hour work day. The figures of productivity 
show each team’s measurement of effort spent per 8 man-
hour day.  
       Additionally, the productivity of project teams which 
employed traditional software processes without the 
traceability model is shown in Table 6. The figures present 
productivity measurements that were accumulated based 
on previous software projects with similar sized 
requirements and time budgets. The figures show that the 
productivity of the same team utilizing the traceability 
model is higher than the one without the traceability 
model. 

 



Jirapanthong, W. 

   
9 

Table 6. Software project measurement 
 

Team Productivity with the traceability model Productivity without the traceability model 
Team A 1.22 1.10 
Team B 1.57 1.45 
Team C 1.38 1.311 
Team D 1.176 1.09 
Team E 1.53 1.28 
Team F 1.62 1.596 

4. CONCLUSION  
 
Six development teams applied the traceability model 
for the software development process. The process 
encompasses agile activities and is compliant with the 
ISO/IEC 29110 standard. Each team’s productivity differed 
only slightly. The average figure of productivity was 1.699. 
All teams delivered their software products successfully. A 
retrospective review concludes that individual team risk 
factors were identified and appropriately addressed. 
Artefacts were created and traceable in support of their 
respective software lifecycle. The mean time to implement 
changes on software products was also found, for example 
Team C spent 15.5 days to tackle all changes. Impacts on 
their time budget and related resources were also 
measured. An average time of implementing changes in 
each team was calculated. We have recovered the work 
effort can be decreased by applying the traceability model. 
The agile Scrum process can be facilitated by having 
traceability. The impact of changes can be fully addressed.  
       Additionally, at the beginning, organizations saw big 
differences or gaps between their plans and their actuals; 
however, as teams matured these gaps reduced. After the 
project, each team needed to look back and revise the 
problems and incidents occurring during the project 
development. The cause of the incidents needed to be 
identified and analysed. The causes could be factors from 
inside or outside the team. There was a correlation 
between productivity and errors. The experiments show 
that not only is productivity high in software project 
development, but so is defect density. This may indicate 
that the planned effort for quality assurance activities is 
not sufficient. Ideally, teams need to balance between two 
attributes, productivity and quality. In practice, teams may 
need to trade-off between degrees of productivity and the 
quality of the software product development. Since the 
actual effort spent during defect removal activities can be 
painful and costly, it can lead to a high cost for software 
deployment. It is noted that process improvement in 
design and code review can increase the focus on quality 
during the development lifecycle. Furthermore, the early 
detection of issues and defects can lead to high defect 
removal efficiency and requires less effort. The cost for 
defect removal at the early stage of software development 
is less than at the later stages of development.  
       According to the agile framework, workflow needs to 
be monitored and the burndown chart needs to be 
updated. Project attributes need to be integrated 
progressively. Some tasks or resource may be replanned 
during release or sprint planning, some backlog may be re-
prioritized due to later project attributes. For future work, 
verification metrics will be investigated to study different 
activities and frameworks of software development and 

deployment. Another goal is to define the effective and 
efficient improvement of software processes. 
 
 
ACKNOWLEDGMENT 
 
This research wouldn’t have been possible without the 
VSEs which contributed in this research to promote and 
support ISO 29110 certification.  
 
 
REFERENCES 
 
Alvarez, J. J., and Hurtado, J. A. (2014). Implementing the 

software requirements engineering practices of the ISO 
29110-5-1-1 standard with the unified process. In 
Proceeding of the 2014 9th Computing Colombian 
Conference (9CCC), pp. 175–183. Pereira, Colombia. 

Anderson, D. J. (2010). Kanban: Successful Evolutionary 
Change for Your Technology Business, Washington DC: 
Blue Hole Press. 

Barry, E. J., Mukhopadhyay, T., and Slaughter, S. A. (2002). 
Software project duration and effort: An empirical 
study. Information Technology and Management, 3(1), 
113–136. 

Boucher, Q., Perrouin, G., Deprez, J.-C, and Heymans, P. 
(2012). Towards configurable ISO/IEC 29110-
compliant software development processes for very 
small entities. In Systems, Software and Services Process 
Improvement: Communications in Computer and 
Information Science, Vol. 301 (Winkler, D., O’Connor, R. 
V., and Messnarz, R., Eds.), pp. 169–180. Berlin: 
Springer. 

Buchalcevova, A. (2021). Towards higher software quality 
in very small entities: ISO/IEC 29110 software basic 
profile mapping to testing standards. International 
Journal of Information Technologies and Systems 
Approach, 14(1), 79–96. 

Castillo-Salinas, L., Sanchez-Gordon, S., Villarroel-Ramos, J., 
and Sánchez-Gordón, M. (2020). Evaluation of the 
implementation of a subset of ISO/IEC 29110 software 
implementation process in four teams of undergraduate 
students of Ecuador. An empirical software engineering 
experiment. Computer Standards & Interfaces, 70, 
103430. 

Dingsøyr, T., Nerur, S., Balijepally, V., and Moe, N. B. 
(2012). A decade of agile methodologies: towards 
explaining agile software development. Journal of 
Systems and Software, 85(6), 1213–1221. 

Erickson, J., Lyytinen, K., and Siau, K. (2005). Agile 
modeling, agile software development, and extreme 
programming: The state of research. Journal of 
Database Management, 16(4), 88–100. 



Toward traceability model between ISO/IEC 29110 artefacts and agile process 

 
10 

Gupta, V., Dutta, K., and Chauhan, D. S. (2016). Mass market 
development strategies of software industries: Case 
study based research. Perspectives in Science, 8, 96–
100. 

Hossain, E., Ali Babar, M., and Paik, H. (2009). Using Scrum 
in global software development: A systematic 
literature review. In Proceeding of the 2009 4th IEEE 
International Conference on Global Software Engineering 
(ICGSE 2009), pp. 175–184. Limerick, Ireland. 

Humphrey, W. (2005). PSP: A Self-Improvement Process for 
Software Engineers, Boston: Addison Wesley. 

International Organization for Standardization. (2015a). 
Software engineering—lifecycle profiles for very small 
entities (VSEs)—part 2–1: Framework and taxonomy, 
ISO/IEC 29110, 2(1), 32. 

International Organization for Standardization. (2015b). 
Software engineering—lifecycle profiles for very small 
entities (VSEs)—part 3: Assessment guide, ISO/IEC TR 
29110, 3(1), 6. 

International Organization for Standardization. (2016). 
Software engineering—lifecycle profiles for very small 
entities (VSEs)—part 1: Overview, ISO/IEC TR 29110, 1, 
23. 

Jirapanthong, W. (2018). The study of international 
standard implementation for supporting software 
process in startup business enterprise. In Proceeding 
of the 8th International Workshop on Computer Science 
and Engineering (WCSE), pp. 735–739. Bangkok, 
Thailand. 

Jirapanthong, W. (2019). Experience in applying of ISO 
29110 to agile software development. Journal of 
Information Science and Technology, 9(1), 63–70. 

Kitchenham, B., and Mendes, E. (2004). Software 
productivity measurement using multiple size measures. 
IEEE Transactions on Software Engineering, 30(12), 
1023–1035. 

Laporte, C. Y., and O’Connor, R. V. (2016). Implementing 
process improvement in very small enterprises with 
ISO/IEC 29110: A multiple case study analysis. In 
Proceeding of the 10th International Conference on the 
Quality of Information and Communications Technology 
(QUATIC 2016), pp. 125–130. Lisbon, Portugal. 

Laporte, C. Y., O’Connor, R. V., and Paucar, L. H. G. (2016). 
The Implementation of ISO/IEC 29110 software 
engineering standards and guides in very small 
entities. Evaluation of Novel Approaches to Software 
Engineering: Communications in Computer and 
Information Science, Vol. 599 (Maciaszek, L. A. and 
Filipe, J., Eds.), pp. 162–179. Cham: Springer. 

Mongkolnam, P., Silparcha, U., Waraporn, N., and Vanijja, V. 
(2009). A push for software process improvement in 
Thailand. In Proceeding of the 2009 16th Asia-Pacific 
Software Engineering Conference, pp. 475–481. Penang, 
Malaysia. 

Rodríguez, D., Sicilia, M. A., García, E., and Harrison, R. 
(2012). Empirical findings on team size and 
productivity in software development. Journal of 
Systems and Software, 85(3), 562–570. 

Schön, E.-M, Sedeño, J., Mejías, M., Thomaschewski, J., and 
Escalona, M. J. (2019). A metamodel for agile 
requirements engineering. Journal of Computer and 
Communications, 7(2), 85–106. 

Suteeca, K., and Ramingwong, S. (2016). A framework to 
apply ISO/IEC29110 on Scrum. In Proceeding of the 
2016 International Computer Science and Engineering 
Conference (ICSEC), pp. 1–5. Chiang Mai, Thailand. 

Suwanya, S., and Kurutach, W. (2008). An analysis of 
software process improvement for sustainable 
development in Thailand. In Proceeding of the 8th IEEE 
International Conference on Computer and Information 
Technology (CIT), pp. 724–729. Sydney, NSW, 
Australia. 

Vellanky, P. N. (2007). Software Maintenance – A Management 
Perspective (Issues, Tools, Techniques, and Trends), Boca 
Raton, FL: Universal-Publishers. 

Waewseangsang, P., and Khongmalai, O. (2014). Risk 
management in Best practice: Case study CMMI in 
software industry in Thailand. KMUTT Research and 
Development Journal, 37(1), 133–141. [In Thai] 

Wagner, S., and Ruhe, M.  (2018).  Systematic review of 
productivity factors in software development.  In 
Proceeding of  the 2nd International Workshop on 
Software Productivity Analysis and Cost Estimation 
(SPACE 2008), pp . 1–6 . Beijing, China. 

 
 


