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ABSTRACT

In this research, The Meshless Local Petrov Galerkin formulation has been
developed based on the moving Kriging interpolation method for solving coupled
Burgers’ equations in two dimensional spaces subjected to Dirichlet boundary
conditions on a square domain with different values of Reynolds number (Re). The
Crank-Nicloson method is chosen for the temporal discretization and the
Kronecker delta function is used for the test function. Numerical results are
compared with those of exact solutions and other available results for different
values of Reynolds number. The results show that the developed formulation
works well for this problem and has the accuracy of the estimation.

Keywords : Coupled Burgers’ Equations, Moving Kriging Interpolation Method, The
Meshless Local Petrov Galerkin
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CHAPTER1
INTRODUCTION

1.1 Rational

Burgers’equation, which proposed by Johannes Martinus Burgers
(1895-1981), is a fundamental partial differential equation from fluid
mechanics. It occurs in various areas of applied mathematics, such as
modeling of gas dynamics and traffic flow. The developing of the numerical
methods for solving this problem has been an interesting task for
mathematicians. Generally, the system of nonlinear PDEs are solved by finite
element (FE) or finite difference(FD) methods. However, the FEM or FDM
have some limitations for example, the form for solving problem could be in
strong form, and it fits nodes are arranged.

Meshless, or meshfree methods are proposed for solving this problem.
Meshless, or meshfree methods, which overcome many of the limitations of
the finite element method, have achieved significant progress in numerical
computations of a wide range of engineering problems. A comprehensive
introduction to meshless methods, meshless methods and Their Numerical
Properties gives complete mathematical formulations for the most important
and classical methods.

In this research, the meshless local Pretov-Galerkin (MLPG) method
with the test function in view of the Kronecker delta function based on the
moving Kriging approximation(MKA) method is proposed for solving the
two-dimensional coupled nonlinear Burgers’ equations|Srivastava, 2011] of
the form,
ou ou ou 1 (9%°u 0%*u
E+ua+v@=ﬁ<ﬁ+a_yz>’
v  odv dv 1 [(d0*v %
E+ua+v@ = E<W+a_3/2>'

(1.1)

where u(x,y,t) and v(x,y, t) are velocity components to be determine and
Re is the Reynolds number.

Constructing of shape functions is one of the most important issues in the MLPG
method. Development of more effective methods for constructing shape functions
have been one of the most active areas of research. There are many methods for
constructing a shape function such as the moving least square (MLS) and the
weighted least square (WLS) method. The most popular method is the moving
least square. Although the MLPG method and many other meshless methods have



been gradually applied to different fields, There exists an inconvenience because
of the difficulty in implementing some essential boundary conditions; the shape
function constructed by MLS approximation does not satisfy the Kronecker delta
function property. Recently, we have tried to use the moving kriging
approximation technique to construct meshless shape functions. The moving
kriging approximation procedure originally employed in geostatistics by using
known values and a semivariogram to determine unknown values. This
mathematical model is name after Krige (Sack, 1989) who introduced the initial
version of this spatial prediction process. The moving kriging approximation has
two advantage; (1) the Kronecher delta property and (2) the consistency property.

These advantage enhance the accuracy of the estimation.two-dimensional
coupled nonlinear Bugers’ equations is proposed to be solved by the local
integral equation formulation and one-step time discretization method by
using the Crank-Nicolson methods. The boundary and domain integrals are
calculated using Gauss-Legendre quadrature method. Two numerical
examples are considered in order to verify the proposed method with testing
its convergence and accuracy.

1.2 Literature Review

There are many researchers who developed the numerical methods for
solving the two-dimensional Burgers’ nonlinear differential equations.

Biazar (2009) proffered the variation iteration method(VIM) to solve the
nonlinear Burgers’ equations. This method is a powerful tool for solving a large
number of problems. Using variational iteration method, it is possible to find
the exact solution or a closed approximate solution of problem. Comparing
the results with those of Adomain’s decomposition and finite difference
methods reveals significant points. To illustrate the ability and reliability of
the method, some example are provided.

Zhu (2010) proposed the discrete Adomain decomposition method (ADM)
for solving the two-dimensional Burgers’ nonlinear differential equations.
Two test problems are considered to illustrate the accuracy of the proposed
discrete decomposition method. The numerical results are in good agreement
with the exact solutions for each problem.

Abdul-Zahra (2012) presented an extension of exponential function method
in rational form to find an exact solution of coupled Burgers’equation. This
extended exponential function method in rational form allows us to find



extra travelling wave solutions of coupled Burgers’equation instead of
exponential function method in rational form.

Srivastava (2011) proposed scheme forms a system of nonlinear algebraic
difference equations to be solved two-dimensional Burgers’ equation at each
time step. To linearize the non-linear system of equations, Newton’s method
is used. The obtained linear system is then solved by Gauss elimination with
partial pivoting. The proposed scheme is unconditionally stable and second
order accurate in both space and time. Numerical results are compared with
those of exact solutions and other available results for different values of
Reynolds number. The proposed method canbe easily implemented for
solving nonlinear problems evolving in several branches of engineering and
science.

1.3 Objective of Research

The purpose of this study is to develop a numerical algorithm using
the Meshless Local Petrov-Galerkin (MLPG) method for solving the two-
dimensional Burgers’ nonlinear differential equations to increase accuracy.

1.4 Scope of Research

1. The equations are needed to be studied as the two-dimensional Burgers’
nonlinear differential equations.

2. A procedure for the numerical solution is developed by the local integral
equation to solve coupled nonlinear reaction-diffusion equations by using
moving Kriging approximation.

1.5 Advantage of Research

The meshless method, which is developed, is a numerical procedure for
solving coupled nonlinear reaction-diffusion equations and correspond to the
boundary conditions problem.



CHAPTERZ2
THEORICAL AND BLACKGROUND

The theories, that related to this research, have been divided into 5 sections such
as governing equation, moving Kkriging interpolation method, Gauss-Legendre
quadrature Method , temporal discretization by the Crank-Nicolson method, and
finally MLPG Upwinding Scheme I.

2.1 The Governing Equation

The two-dimensional coupled Burgers’equation are as following

ou 6u+ ou 1 62u+62u -
ot ox ”ay Re\ox? " ay2)

2.1
v v ov 1 <62v 62v> ~ 0o

ot “ax "9y Re\ox® " ay?
subject to the initial conditions
ulx,y,0) = y,(x,y); (x,¥) € 2
v(x,y,0) = v, (x,y); (x,y) € 2
and boundary conditions
u(x,y,t) =& (x,y);(x,y) €002 t >0,
v(x,y,0) = &(x,9); (x,y) €002t > 0,

where 2= {(x,y):a <x < b,c <y <d}and 002 is its boundary ; u(x, y, t) and
v(x,y,t) are the velocity components to be determined, y,, y,, £, and &, are

known functions and Re is the Reynolds number.

2.2 Moving Kriging Interpolation Method

The kriging interpolation is a well-known geostatic technique for spatial
interpolation in geology and mining (Lei, 2003).The formulation of the
construction of meshless shape function by moving kriging approximation (MKA)
is introduced briefly in the following.Similar to the MLS approximation, Consider
the function u(x) defined in the domain Q discretized by a set of properly
scattered nodes x;,(i = 1,2,...,n), where nis the total number of nodes in the
whole domain. It is assumed that only N nodes surrounding point x have the effect
on u(x).The sub-domain Q, that encompasses these surrounding nodes is called
the interpolation domain of pointx. The MKA u"(x)at pointxis defined as
presented in (Chen, 2011). Therefore the formulation of the meshless shape
function using MKA is given by



N
W) = ) ¢, (Ou = Pwu,xeq, 2.2)

where u = [u(x;) u(x,) - u(xy)]” is a vector value of the function in the
domain Q. @(x) isa 1l X N vector of shape functions, expressed as:

d(x) =p"(x)A+ 1" (x)B, (2.3)
where matrices 4 and B are defined as:

A= (PTRT'P)"'PTR,

(2.4)
B = R~1(I — PA).
In which 7 is a unit matrix of size N xN, and vector p(x) is:
p'(x) = [p1(x1) - pm(xp)l. (2.5)

In general, a linear basis in two-dimensional space is:
p'(x)=(0xy), m=3,
a quadratic basis is given as
p'(0) = (Lxyx%xy,y?), m=6,
and a cubic basis is
pT(x) = (1,x,y,x%, xy,v%, x3,x%y,xy%,y%), m =10.

For matrix P with the size Nxm ,values of the polynomial basis functions (2.5) at
the given set of nodes are collected:

P =

p1(x1) - Pm(x1)
] (2.6)

p1(xn) - Pm(xn)

Matrices R and vector r(x) are defined by the following equations:

y(x1, %) Y(xpxzv)]
R = )

y(xn,x1) o y(xXn, Xy)



()= [y(xx) - y(xxy)l,

where y(xl-, xj) is the correlation function between any pair of nodes located at x;
and x;, representing the covariance of the field value u(x) , i.e.

y(xux;) = Eulx) ux) ], (2.7)

Similarly, the covariance E[u(xl-) u(x;) ] can be replaced by y(x, xj). [t can be seen

from the foregoing formulations that the values of matrices R and r play important
roles in the computation. A simple and frequently- used correlation function is a
Gaussian function:

y(xx;) = 7%, (2.8)

where 7;; = ||x; — x;]| and @ > 0 are the correlation parameters used to fit the
model and are assumed to be given.

The first-order partial derivatives of the shape function @(x) against the
coordinates x;,i = 1,2 can be easily obtained from Eq. (2.3)

@;(x) = pi(x)A + 1’ (x)B, (2.9)

where (-); denotes 9(-)/dx".

The shape function obtained from the moving kriging approximation possesses the
following delta function property:

1,0=]1=12,..,N)

@ (%)) = 81y = {0, ad#],1,]=12..,N) (2.10)

The moving kriging approach is an exact interpolator, and its shape functions can
exactly reproduce any function included in the basis. In particular, if all constants
and linear terms are included, it reproduces a general linear polynomial exactly,
that is,

N z
Y a@=1
I=1

N

Z ®,(X) %, = x 5. (2.11)
I1=1

Z D)y =y

J

~
1]
[



2.3 Gauss-Legendre Quadrature Method

For 1-D, Let x; be nodes and w; be weights. The quadrature techniques formulation
is following as (Abbott, 2005):

b
L =f f(x)dx, (2.12)

where f(x) be a polynomial of order 2n-1. Let [a,b] be [-1,1] can be accomplished
by scaling.

f_llf(x)dx B f_llg(@df ~ an: w; g; (2.13)

where & be transformation of variable x and g(&) be transformation of variable x.

For 2-D, Letx; and y;, { = 1,2,...,nare nodes and w; and w; are weights.

The quadrature techniques formulation is following as :

1

= jabﬂx,y)dﬂ = ]1 f_llg(é Ddédn~ | Ly

-1

1 n,_f n,7 1’l§ 1’1,7 1’l§
= D wgn= Y| 3wy |= DD waws g
—1i=1 i=1 i=1 j=1i=1

where &, 7; are transformation of variables and g;; is transformation function.

Calculating for weight
If we change the boundary condition form [-1,1]. We defined
X = CO + Cl/l,
where C,, C; are unknown constants.
a = CO + Cl(—l),
b =Cy+ Ci(—1),
a -1
C = b 1|_a+b_a+b
°_|1 —1|_1+1_ 2’
1 1




|1a
_ 1 b _b—a_b—a

Cl_|1—1|_1+1_ 2’
1 1

Hence

_(a+b)+(b—a)/1d —(b_a>d}t
=2 2 )T T2

= [ oot = [ o (252 ar= (B39 S wircan
a =1 i=1

For 2-D, we used Gauss-Legendre polynomial (1, 4, 4%, A*) then

1
Wif () + waf (1) = f 1di=2,

-1

1
Wif () + waf (A) = f Adi=0,
WG+ wof ) = | ai= :

wif(A4) +wyaf(4,) = J A3da=0.

Hence
wif(1) +wyf(1) =2,

wif (A1) + waf(1,) =0,
2
W1f(/1i) + sz(/ig) =3

wif(A3) + wof(43) = 0.

- \/2—5 and 4, = \/2—5 Some

low-order rules for solving the integration problem are listed tablel.

The answers of equation (2.44) arew; = w, =1, 4; =



Table 2.1 abscissas and weights for Gaussian quadrature.

Number of points, n Points, x; Weights, w;
1 0 2
2 + E 1
= i
0 —
9
3 e 5

(3-2/6/5) | 18430

i—

7 36
4
(3+2/6/5) | 18-+30
i — -
7 36
0 128
225
1 322 +13V70
+- [5-2,10/7 e
5 ~3 / 900

1 322 —-13v70

2.4 Temporal Discretization by The Crank-Nicolson method

The Crank-Nicolson method is based on the trapezoidal rule, giving second-order
convergence in time. For example, in one dimension, if the partial differential
equation is

ou ou 0%u
= =Flurn, o) (2.14)

then, letting u(iAx,nAt) = u}', the equation for Crank-Nicolson method is a
combination of the forward Euler method at n and the backward Euler method at
n + 1 (note, however, that the method itself is not simply the average of those two
methods, as the equation has an implicit dependence on the solution):

utt —ul - . ou 0%u
—_— = i ul xl ' 5 )
At !

dx’ 9x?


http://en.wikipedia.org/wiki/Trapezoidal_rule_(differential_equations)
http://en.wikipedia.org/wiki/Partial_differential_equation
http://en.wikipedia.org/wiki/Partial_differential_equation
http://en.wikipedia.org/wiki/Forward_Euler_method
http://en.wikipedia.org/wiki/Backward_Euler_method

10

n+l _ . n 2
A Ay uxta—u—au
At : T ox axz )

Hence (Eq.(2.45)+Eq.(2.46))/2 reveals in Eq.(2.47),

+1 2
u —uf _ llFinﬂ <u,x,t ou 9 u)

At 2 "9x’ 9x?
ou 9%u (2.15)
n — —
+Fl (u’x’t}ax’ax2> )
J-1, n+l j, n+1 j*1,n+1
[ °
[ °
j-1,n j,n jt1,n

Figure2.1 The Crank-Nicolson stencil for a 1-D problem



2.5 MLPG Upwinding Scheme I

The MLPG method is based on the Petrov-Galerkin weighted residual

procedures. Different spaces for the test and trial
functions can be used, as shown in Figure 2.2 (Atluri, 2004)

SRRy *
P nGaa

Trial functions

Figure 2.3 : MLPG Upwinding Scheme I (US-I).

§
% T .|S|

S

Figure 2.4 : MLPG Upwinding Scheme I (US-I): Specification.

11
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Therefore one of the very natural ways to construct upwinding schemes is to
choose different trial and test functions. This can be done by a lot of ways. For
example, in order to apply upwinding in the streamline direction, we can skew the
test function opposite to the streamline direction as shown in Figure 2.3. For
convenience, we denote this as upwinding scheme I (US I). As an illustration, we
choose a skewed weight function as the test function. The skewed weight function
is given as follows: using the same form of weight function, we shift the position of
the maximum of w;(x) from x; to x;- yr;s;, as shown in Figure 2.4, where, s; is the
unit vector of the streamline direction at x;, r; is the size of the support for the test
functions at x;, and y is given by

_1 th(Pe) ! (2.16)
V=29 727) T Pe '

in which Pe is a local Peclet number defined as:

ur; advective transport rate
Pe =— or ——— (2.17)
k diffusive transport rate

The size of the support for the trial functions also equal to r; at x;, and the local
sub-domain at x; is coincided with the support for the test functions
at Xi.



CHAPTERS3
METHODOLOGY

3.1 Space Discretization by MLPG Method with a Kronecher Delta Function (MLPG2)

The local integral formulation of Eq.(2.1) are as following

Ju 5
PR Wldt:R—e fV uw;dt — .[u—wldt— fv—wldt,
ol ol ol Qs
(3.1
v 1 5 ov ov
R wldtzR—e .[V vw;dt — fua—wldt IU@Widt-
ol Q% ol QL

Let @i(x, t) and ¥(x,t), which substitute u(x,t) and v(x,t) respectively, be the trial
solutions.

N N
W0 =Y 6,u0, 5=y 4@y,
j=1 j=1

For internal nodes, from local integral equations (3.1), we have the following nonlinear
equations:

EN: ¢(x)WdQ— ZJ ,xx(x)+¢,yy(x))wdgaj

j=1qg

- z 9, ,(Ou(x) wdQi (3.2)

Jj=1 Qis

4 Z 4, , (COV(x) wdi;

j=1 Qis

Similarly, we have

Z j "’(")Wdﬂ Z J 1) + 4, (1) | wd 2D,

_Z f $, , (Ou(x) wd, (3.3)

j=1

S
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¢, (Ov(x) wdQ;,

.[\'42

Jj=1 Qis

where w; is a Kronecher delta function used as the test function:

wi(x) = {é " orex (3.4)
Egs.(3.2) and (3. 3) can be written as:
g0 Z (0 @D + 4, X0 ) 8 = ) g, ou,
j=1 j=1
N
Z 8, GOV, :5)
N 9D, ; 1 N
Z @S = Y (40 D+ 4, 0) 5= D 4, @U@,
j=1 j=1 j=1
= 4, v, 36)
j=1
Because of u(x;) = 1; and v(x;) = U;, Egs.(3.5) and (3. 6) are as the following
Z ) o = z (600 + 4, (00 ) 8, - 2 ¢, D,
— :
] N
_ Z g, () 1, 3.7)
j=1
N e N 1 N
Y 405 = D (4, @0+ 4,(0) Z (DD,
j=1 j=1 =1
- Z ¢j_y(xi)9i vj, (3.8)
j=1
Egs.(3.7) and (3.8) can be written as:
N
Z ) z [(1/Re) (40 + 4, (D) .

—¢j,x(xi>ul ¢, ()0, W,
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i g 2 = i ((1/Re) (40 + 4, (D)
j=1 j=1

(3.10)
— 4, ()0 4, (x)0,] D).
The following abbreviations have been used for the integral term:
Ay = ¢j(xi).
By = (1/Re) (4, (2D + 8,30 - 4,4, , (XD
Egs. (3.9) and (3.10) can be transformed into matrices form as:
ou
A—=B(U,V)U, (3.11)
Jt
v
A—=B(U, V)V, (3.12)
at
where A= [Aij]NXN ,B = [Bij]NXN 5 ﬁ = [ﬁl ﬁz ﬁN]I and ’V =

[ﬁ1 ﬁ2 ﬁN]'-

The finite-difference approximation of time derivatives of Eqs.(3.11) and (3.12) in the 8
method is given as follows:

Uk+1 _ UK

I, = B(UK+L vK+O)yk+1 4 (1 — 9)B(U¥, VF) UK, (3.13)
Vk+1 _ VK
— N\ OB(UK*L, V1) yk+1 4 (1 — 8)B(UK, VF)Vk, (3.14)

Egs. (3.13) and (3.14) can be written as:

[I — AtOB(U*HL, VD) U**T = [I + At(1 — 0)B(UK, V) Uk (3.15)
[I — AtOB(U*HL, VD)V = [1 + At(1 — 8)B(U*, VF) vk (3.16)
Because of B are nonlinear functions of U and V, we solve them iteratively in each time
step with replacing B¥*! by B¥, respectively, at zeroth iteration
(UktL0 = yk yk+10 = k) Egs. (3.15) and (3.16) are converted into a set of nonlinear

algebraic equation for unknowns U**! and V**,
Uk = [ — AtoB (UL VD] HT + At(1 - 0)B(US, VF) U (3.17)

Vk+1,l+1 — [[ _ At@B(U"“'l, Vk+1,l)]—1[1 + At(l _ Q)B(Uk,Vk)]Vk (318)



CHAPTER 4
NUMERICAL EXPERIMENTS

In this chapter, some numerical results are presented to verify this approach which
compares to an exact solution and the previous research.

4.1 Example 1

In the following example, we consider the 2D Burgers' equations, with the initial

conditions u(x,y,0) =x + vy , v(x,y,0) = x —y and the exact solutions are as follows
(Bahadir, 2003):

x+y—2xt
B T T
x—y—2yt
e T

The computational domain has been taken as Q = {(x,y):0 < x < 0.5,0 < y < 0.5}.

The results have been obtained using Re = 1, N = 441, At = 0.0001 at time instant

t =0.1 and t = 0.4, respectively. It is clear that the results from the present study are in
good agreement with the exact solution (see in table 4.1-4.4). Perspective views of u and v
are given in Fig.4.2. The exact and numerical solutions of u and v coincide (see in Figure
4.1-4.2). In addition, the proposed method achieves similar results given by (Zhu,2010).

4.2 Example 2

For the first example consider the following system of nonlinear PDEs in the region

Q = [0,1] x [0,1]. A solution of Bugers equation was given by Fletcher (Srivastava, 2011)
using the Hopf-Cole as follows:

3 1
ulx,y,t) =—— — — :
4 4]1 + exp (—4x + 4y —t)R
32
3 1
v(x,y,t) ==+

4 41+ exp((—4x + 4y — )R/32)|

The results have been obtain using Re = 10,80 and At = 0.0001 at time instant

t =0.05 and t =0.2, respectively. Table5 and Fig.4.4 show the results for Re = 10.

The numerical solutions are similar to the exact solution. For tables 4.6-4.7, the results
for Re = 80 demonstrate that the developed method achieves similar results given by
(Zhu, 2010). Perspective views of u and v for Re = 80 at At = 0.0001 are given in
Figure 4.5. In case of Re =500, At = 0.01 at time instant t = 0.5 with applying
upwinding scheme I, the numerical solutions are similar to the exact solution and the
previous research (Srivastava, 2011) (see in table 4.8 and Figure 4.6). However, the
absolute errors of u and v in this research seem to be less than the previous research
(see in Figure 4.3).
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Table 4.1 Comparison among the exact solution, the previous research and numerical
solution foru att = 0.1.

(x,9) u(Exact) u(Zhy,2010) Present work
(0.1,0.1) 0.18367 0.18368 0.18367
(0.3,0.1) 0.34694 0.34694 0.34694
(0.2,0.2) 0.36735 0.36735 0.36735
(0.4,0.2) 0.53061 0.53062 0.53061
(0.1,0.3) 0.38776 0.38776 0.38776
(0.3,0.3) 0.55102 0.55103 0.55102
(0.2,0.4) 0.57143 0.57144 0.57143
(0.3,0.4) 0.65306 0.65307 0.65306
(0.5,0.5) 0.91837 0.91838 0.91837

Table 4.2 Comparison among the exact solution, the previous research and numerical
solutions for v att = 0.1.

(x,5) v(Exact) v(Zhu,2010) Present work
(0.1,0.1) -0.02041 -0.02041 -0.02041
(0.3,0.1) 0.18367 0.18368 0.18367
(0.2,0.2) -0.04082 -0.04082 -0.04082
(0.4,0.2) 0.16327 0.16327 0.16327
(0.1,0.3) -0.26531 -0.26531 -0.26531
(0.3,0.3) -0.06122 -0.06123 -0.06122
(0.2,0.4) -0.28571 -0.28572 -0.28571
(0.3,0.4) -0.18367 -0.18368 -0.18367
(0.5,0.5) -0.10204 -0.10205 -0.10204

Table 4.3 Comparison among the exact solution, the previous research and numerical
solutions for u att = 0.4.

(x,9) u(Exact) u(Zhu,2010) Present work
(0.1,0.1) 0.17647 0.17657 0.17647
(0.3,0.1) 0.23529 0.23585 0.23529
(0.2,0.2) 0.35294 0.35314 0.35294
(0.4,0.2) 0.41176 0.41242 0.41176
(0.1,0.3) 0.47059 0.47044 0.47059
(0.3,0.3) 0.52941 0.52972 0.52941
(0.2,0.4) 0.64706 0.64701 0.64706
(0.3,0.4) 0.67647 0.67665 0.67647
(0.5,0.5) 0.88235 0.88286 0.88235

Table 4.4 Comparison among the exact solution, the previous research and numerical
solutions for vatt = 0.4.

(x,9) v(Exact) v(Zhu,2010) Present work
(0.1,0.1) -0.11765 -0.11729 -0.11765
(0.3,0.1) 0.17647 0.17657 0.17647
(0.2,0.2) -0.23529 -0.23458 -0.23529
(0.4,0.2) 0.05882 0.05928 0.05882
(0.1,0.3) -0.64706 -0.64574 -0.64706
(0.3,0.3) -0.35294 -0.35188 -0.35294
(0.2,0.4) -0.76471 -0.76303 -0.76471
(0.3,0.4) -0.61765 -0.61610 -0.61765
(0.5,0.5) -0.58824 -0.58646 -0.58824
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Figure 4.1: Absolute error of u and v, At =0.0001 attimeinstant ¢ = 0.4
(a) Absolute error of u ; (b) Absolute error of v.
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u(x,y,0.4)

v(X,y,0.4)

Figure 4.2 : A numerical illustration of approximation solutions of example2 by the

developed method at At = 0.0001: (a) u (x,y,0.1); (b) v (x,y,0.1); (¢) u (x,y,0.4); and
(v (x,y,0.4).

Table 4.5 Comparison among the exact solution, the previous research and numerical

solutions foru and v at Re = 10, N = 441, and At = 0.0001.

t = 0.05 t=10.2
(x’ }’) * Preser:; work v (Exact) Preser:{c work | ¥ (Exact) Preser:fc work v (Exact) Preser:]t work
(0.1,0.1) 0.61525 0.61525 0.88475 0.88475 0.58716 0.58716 0.91284 0.91284
(0.5,0.1) 0.58540 0.58540 0.91460 0.91460 0.56127 0.56129 0.93873 0.93871
(0.9,0.1) 0.55983 0.55984 0.94016 0.94016 0.54113 0.54111 0.95887 0.95889
(0.3,0.3) 0.61525 0.61525 0.88475 0.88475 0.58716 0.58717 0.91284 0.91283
(0.7,0.3) 0.58540 0.58540 0.91460 0.91460 0.56127 0.56128 0.93873 0.93872
(0.1,0.5) | 0.64628 0.64628 0.85372 0.85372 0.61720 0.61721 0.88280 0.88279
(0.5,0.5) | 0.61525 0.61525 0.88475 0.88476 0.58716 0.58717 0.91284 0.91283
(0.9,0.5) | 0.58540 0.58540 0.91460 0.91460 0.56127 0.56128 0.93873 0.93872
(0.3,0.7) | 0.64628 0.64628 0.85372 0.85372 0.61729 0.61720 0.88280 0.88280
(0.7,0.7) | 0.61525 0.61525 0.88475 0.88475 0.58716 0.58717 0.91284 0.91283
(0.1,0.9) | 0.67481 0.67481 0.82519 0.82519 0.64817 0.64816 0.85183 0.85184
(0.5,0.9) | 0.64628 0.64628 0.85372 0.85372 0.61720 0.61720 0.88280 0.88280
(0.9,0.9) 0.61525 0.61525 0.88475 0.88475 0.58716 0.58717 0.91284 0.91283

Table 4.6 Comparison among the exact solution, the previous research and numerical
solutions for u using Re = 80 and At = 0.0001.
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(x,5) t=0.05 t=0.2

Exact u(Zhu,2010) Present work Exact u(Zhu,2010) Present work
(0.1,0.1) 0.61720 0.61733 0.61709 0.59438 0.59465 0.59401
(0.9,0.2) 0.50020 0.50020 0.50021 0.50014 0.50013 0.49987
(0.8,0.3) 0.50148 0.50147 0.50151 0.50102 0.50098 0.50129
(0.7,0.4) 0.51052 0.51046 0.51054 0.50733 0.50714 0.50736
(0.9,0.5) 0.50398 0.50395 0.50411 0.50275 0.50266 0.50292
(0.1,0.6) 0.74811 0.74810 0.74799 0.74725 0.74723 0.74467
(0.8,0.6) 0.52667 0.52658 0.52673 0.51896 0.51867 0.51905
(0.3,0.7) 0.74492 0.74491 0.74488 0.74267 0.74264 0.74254
(0.4,0.7) 0.73665 0.73663 0.73659 0.73103 0.73102 0.73097
(0.2,0.8) 0.74930 0.74930 0.74929 0.74898 0.74897 0.74815
(0.6,0.8) 0.71676 0.71677 0.71666 0.70439 0.70457 0.70431
(0.1,0.9) 0.74990 0.74990 0.75012 0.74986 0.74986 0.74978
(0.9,0.9) 0.61720 0.61733 0.61727 0.59438 0.59465 0.59452

Table 4. 7 Comparison among the exact solution, the previous research and numerical

solutions for v using Re = 80 and At = 0.0001.

x,y) t=0.05 t=0.2

Exact u(Zhu,2010) Present work Exact u(Zhu,2010) Present work
(0.1,0.1) 0.88280 0.88267 0.88291 0.90561 0.90534 0.90598
(0.9,0.2) 0.99980 0.99980 0.99979 0.99986 0.99987 1.00013
(0.8,0.3) 0.99852 0.99853 0.99849 0.99898 0.99902 0.99871
(0.7,0.4) 0.98948 0.98954 0.98946 0.99267 0.99286 0.99264
(0.9,0.5) 0.99602 0.99605 0.99589 0.99725 0.99734 0.99708
(0.1, 0.6) 0.75189 0.75190 0.75201 0.75275 0.75277 0.75533
(0.8,0.6) 0.97333 0.97342 0.97327 0.98103 0.98133 0.98095
(0.3,0.7) 0.75508 0.75509 0.75512 0.75733 0.75736 0.75746
(0.4,0.7) 0.76335 0.76336 0.76341 0.76896 0.76898 0.76903
(0.2,0.8) 0.75070 0.75070 0.75071 0.75102 0.75103 0.75185
(0.6,0.8) 0.78324 0.78323 0.78334 0.79561 0.79543 0.79569
(0.1,0.9) 0.75009 0.75009 0.74988 0.75014 0.75014 0.75022
(0.9,0.9) 0.88280 0.88267 0.88273 0.90561 0.90534 0.90548

Table 4.8 Comparison among the exact solution, the previous research and numerical

solutions for u and v using Re = 500 and At = 0.01 at t=0.5

x,y) t=0.5 t=0.5

Exact u(Srivastava,2011) | Present work Exact v(Srivastava,2011) | Present work
(0.1,0.1) 0.50010 0.48714 0.50238 0.99990 1.01286 0.99762
(0.5,0.1) 0.50000 0.50002 0.50575 1.00000 0.99999 0.99425
(0.9,0.1) 0.50000 0.50000 0.49726 1.00000 1.00000 1.00274
(0.3,0.3) 0.50010 0.49519 0.50547 0.99990 1.00481 0.99453
(0.7,0.3) 0.50000 0.50001 0.50530 1.00000 0.99999 0.99470
(0.1,0.5) 0.75000 0.74990 0.74916 0.75000 0.75010 0.75000
(0.5,0.5) 0.50010 0.49429 0.50470 0.99990 1.00571 0.99530
(0.9,0.5) 0.50000 0.49978 0.50262 1.00000 1.00022 0.99738
(0.3,0.7) 0.75000 0.75001 0.74782 0.75000 0.74999 0.75218
(0.7,0.7) 0.50010 0.49325 0.50313 0.99990 1.00676 0.99687
(0.1,0.9) 0.75000 0.75000 0.748550 0.75000 0.75000 0.75145
(0.5,0.9) 0.75000 0.75001 0.74990 0.75000 0.74999 0.75011
(0.9,0.9 0.50010 0.47275 0.50471 0.99990 1.02725 0.99529
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Figure 4.3 : Absolute error of u and v At = 0.01 at time instant t = 0.5:
(a) Absolute error of u ; (b) Absolute error of v.
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(Z'0' A X)n

(Z'0'A'x)n

Figure 4.4 : A numerical illustration of approximation solutions of examplel by the
developed method at Re = 10, At = 0.0001 : (a) u (x,y,0.2); and (b)v (x,y,0.2).

(20 A )N

Figure 4.5 : A numerical illustration of approximation solutions of example1 by the
developed method at Re = 80,At = 0.0001: (a) u (x,y,0.2); and (b)v (x,y,0.2).
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Figure 4.6 : A numerical illustration of approximation solutions of examplel by the

developed method at Re = 500,At = 0.01: (a) u (x,y,0.5); (b) v (x,y,0.5).



CHAPTER 5
CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

The developed MLPG method based on MKA method had been successfully applied to
solve the solutions of coupled Burger system. The efficiency and accuracy of the
developed method was demonstrated by two test problems.

For problem1, it obviously that there are no difference between the exact and the trial
solutions. For problem2, in case of Re = 10 and 80, the numerical results show that the
developed method is reliable to solve the problem. In addition, the values of u and v
obtained from the numerical solution close to the exact solution and the previous
research.

In case of Re =500, the developed method with upwinding scheme works well. In
addition, the results of the developed method are closer to the exact solution and the
previous serearch.

The developed MLPG method is more efficient than the previous methods. The reasons
for this is the evidence from the errors of u and v by the developed method seem to be
less than the previous method (see in Figures 4.1 and 4.3).

5.2 Recommendations

In future works, the MLPG formulations will be developed for solving coupled Burgers’
equations in 3-dimensional spaces which satisfy physics and engineering problems.
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