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ABSTRACT 

In this research, The Meshless Local Petrov Galerkin formulation has been 

developed based on the moving Kriging interpolation method for solving coupled 

Burgers’ equations in two dimensional spaces subjected to Dirichlet boundary 

conditions on a square domain  with different values of Reynolds number (𝑅𝑒). The 

Crank-Nicloson method is chosen for the temporal discretization and the 

Kronecker delta  function is used for the test function. Numerical results are 

compared with those of exact solutions and other available results for different 

values of Reynolds number. The results show that the developed formulation 

works well for this problem and has the accuracy of the estimation.  

 

 

 

Keywords : Coupled Burgers’ Equations, Moving Kriging Interpolation Method, The  

                    Meshless Local Petrov Galerkin 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 
 

I 

DP
U

http://www.google.co.th/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=1&cad=rja&uact=8&ved=0CBwQFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FKronecker_delta&ei=Yg_bVJsGio64BN_wgIgH&usg=AFQjCNGh3CUQ4NCyy4uu2v2-qM5JLn5Ang&bvm=bv.85761416,d.c2E


 
 

ช่ืองานวิจยั : วธิเีมชเลสส ำหรบักำรแกป้ญัหำสมกำรเบอรเ์กอรแ์บบเชงิคู่โดยใชว้ธิมีฟูวงิครกิกงิ 

ผูวิ้จยั :  นำงสำวกนิษฐำ  ยิม้นำค          ภาควิชา :  คณติศำสตรแ์ละสถติ ิ

คณะ :    วทิยำศำสตรป์ระยกุต์              ปีท่ีพิมพ ์:  2559    

จ านวนหน้า : 25  หน้ำ                            ลิขสิทธ ์: มหำวทิยำลยัธุรกจิบณัฑติย ์

 

บทคดัย่อ 

 

งำนวจิยัครัง้นี้น ำเสนอกำรพฒันำวธิเีมชเลสโลคลัพทีรอฟ-กำเลอคนิ   โดยใชต้วัประมำณแบบมูฟ
วิง่ครกิกงิ เพื่อใชใ้นกำรแก้ปญัหำสมกำรเบอรเ์กอรแ์บบคู่ใน 2 มติภิำยใต้เงื่อนไขขอบเขตแบบดรีี
เคล ในโดเมนที่มลีกัษณะเป็นแบบสี่เหลีย่ม  โดยจะศกึษำในกรณีที่ค่ำเรยโ์นลดน์ัมเบอรแ์ตกต่ำง
กนัไป  ในส่วนของกำรประมำณค่ำแบบไม่ต่อเนื่องเชงิเวลำ ในงำนวจิยันี้จะประยุกตใ์ช ้ วธิแีครงค์
นิโคลสนั  และใช้ฟงัก์ชนัทดสอบแบบฟงัก์ชนัเดลตำโครเนกเกอร์  ผลที่ได้จำกกำรวเิครำะห์เชงิ
ตวัเลขจำกวธิทีี่พฒันำขึ้นดงักล่ำวนี้ จะน ำไปเปรยีบเทยีบกบัผลเฉลยแม่นตรง(Exact Solution) 
และผลลพัธ์จำกวธิกีำรแก้ปญัหำจำกงำนวจิยัอื่นๆ โดยจะศกึษำจำกกรณีที่ค่ำเรยโ์นลด์นัมเบอรท์ี่
แตกต่ำงกนัไป ผลกำรวจิยัพบว่ำวธิทีี่พฒันำขึน้ท ำงำนได้ดสี ำหรบัแก้ปญัหำดงักล่ำวและมคีวำม
ถูกตอ้งของกำรประมำณค่ำ 
 
 
 

ค าส าคญั : สมกำรกำรเบอรเ์กอรแ์บบคู่, ตวัประมำณมฟูวิง่ครกิกงิ, วธิเีมชเลสโลคลัพทีรอฟ-กำ 
              เลอคนิ,  

II 

DP
U



 
 

  ACKNOWLEDGEMENTS 

This research has been completed because of suggestion from a state-of-the-art 

technical computing language and numerical algorithms by Asst. Prof. Dr. Anirut 

Luadsong. Moreover, I would like to thank Dhurakij Pundit University for the 

scholarship and their financial support. 

 

 

                                                                               Kanittha  Yimnak 

                                                                               23 April  2016 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

III 

DP
U



 
 

                

CONTENTS 

 PAGE 

ENGLISH ABSTRACT I 

THAI ABSTRACT II 

ACKNOWLEDGEMENTS III 

CONTENTS IV 

LIST OF TABLES V 

LIST OF FIGURES VI 

 
CHAPTER 

 

1.    INTRODUCTION 1 
       1.1     Rationale 1 
       1.2     Literature Review 2 
       1.3     Objective of Research 3 
       1.4     Scope of Research 3 
       1.5     Advantage of Research 3 
  
2.    THEORETICAL BACKGROUND 4 
       2.1     The Governing Equation 4 
       2.2      Moving Kriging Interpolation Method 4 

       2.3      Gauss-Legendre Quadrature Method 7 
       2.4      Temporal Discretization by The Crank-Nicolson Method 9 
       2.5       MLPG Upwinding Scheme I 11 
  
3.   METHODOLOGY 13 
        3.1   Space Discretization by MLPG Method with a Kronecher  
                 Delta Function  (MLPG2) 

13 

  
4.   NUMERICAL EXPERIMENTS 16 
       4.1      Example 1 16 

       4.1      Example 2 16 
  
5.   CONCLUSIONS AND RECOMMENDATIONS 24 
       5.1  Conclusions 24 
       5.2   Recommendations 24 
  
REFERENCES 25 
  

 

 

 

IV 

DP
U



 
 

 

LIST OF TABLES  

TABLE   PAGE  

2.1          Abscissas and weights for Gaussian quadrature. 9 

4.1         Comparison among the exact solution, the previous research and  
               numerical solution for 𝑢 at 𝑡 = 0.1. 

17 

4.2          Comparison among the exact solution, the previous research and  
                numerical solutions for 𝑣 at 𝑡 = 0.1. 

17 

4.3          Comparison among the exact solution, the previous research and  
                numerical solutions for 𝑢 at 𝑡 = 0.4. 

17 

4.4          Comparison among the exact solution, the previous research and  
                numerical solutions for 𝑣 at 𝑡 = 0.4. 

17 

4.5         Comparison among the exact solution, the previous research and  

              numerical solutions for 𝑢 and 𝑣 at  𝑅𝑒 = 10, 𝑁 = 441,  and 

              ∆𝑡 = 0.0001.  

19 

4.6         Comparison among the exact solution, the previous research and  
                numerical solutions for 𝑢 using 𝑅𝑒 = 80 and ∆𝑡 = 0.0001. 

20 

4.7          Comparison among the exact solution, the previous research and  
                numerical solutions for 𝑣 using 𝑅𝑒 = 80 and ∆𝑡 = 0.0001. 

20 

4.8         Comparison among the exact solution, the previous research and  
               numerical solutions for 𝑢 and 𝑣 using 𝑅𝑒 = 500 and ∆𝑡 = 0.01  
               at t=0.5 

20 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V 

DP
U



 
 

 

LIST OF FIGURES  

FIGURE  PAGE  

2.1       The Crank–Nicolson stencil for a 1-D problem 10 

2.2       The MLPG Method without Upwinding. 11 

2.3       MLPG Upwinding Scheme I (US-I). 11 

2.4       MLPG Upwinding Scheme I (US-I): Specification. 11 

4.1       Absolute error of 𝑢 and 𝑣, ∆𝑡 = 0.0001 at time instant  𝑡 = 0.4 :  
            (a) Absolute error of 𝑢  ; (b) Absolute error of 𝑣. 

18 

4.2       A numerical illustration of approximation solutions of example2 by  
            the developed method at ∆𝑡 = 0.0001 : (a) 𝑢 (𝑥, 𝑦, 0.1) ; 
            (b) 𝑣 (𝑥, 𝑦, 0.1); (c) 𝑢 (𝑥, 𝑦, 0.4); and (d)𝑣 (𝑥, 𝑦, 0.4). 

19 

4.3      Absolute error of 𝑢 and 𝑣, ∆𝑡 = 0.01 at time instant  𝑡 = 0.5 :  
            (a) Absolute error of 𝑢  ; (b) Absolute error of 𝑣. 

21 

4.4       A numerical illustration of approximation solutions of example1 by  
            the developed method at  𝑅𝑒 = 10, ∆𝑡 = 0.0001 : (a) 𝑢 (𝑥, 𝑦, 0.2);  
            and (b)  𝑣(𝑥, 𝑦, 0.2). 

22 

4.5      A numerical illustration of approximation solutions of example1 by    
            the developed method at  Re  = 80, ∆𝑡 = 0.0001 : (a) 𝑢 (𝑥, 𝑦, 0.2);  
            and (b)  𝑣 (𝑥, 𝑦, 0.2). 

22 

4.6      A numerical illustration of approximation solutions of example1 by  
            the developed method at  𝑅𝑒 = 500, ∆𝑡 = 0.01 : (a) 𝑢 (𝑥, 𝑦, 0.5) ;  
            (b) 𝑣 (𝑥, 𝑦, 0.5). 
 

23 

 

 

VI 

DP
U



1 
 

CHAPTER1 
INTRODUCTION 

 
1.1 Rational 

Burgers’equation, which proposed by Johannes Martinus Burgers  

(1895-1981), is a fundamental partial differential equation from fluid 

mechanics. It occurs in various areas of applied mathematics, such as 

modeling of gas dynamics and traffic flow. The developing of the numerical 

methods for solving this problem has been an interesting task for 

mathematicians. Generally, the system of nonlinear PDEs are solved by finite 

element (FE) or finite difference(FD) methods. However, the FEM or FDM 

have some limitations for example, the form for solving problem could be in 

strong form, and it fits nodes are arranged.  

 

Meshless, or meshfree methods are proposed for solving this problem. 

Meshless, or meshfree methods, which overcome many of the limitations of 

the finite element method, have achieved significant progress in numerical 

computations of a wide range of engineering problems. A comprehensive 

introduction to meshless methods, meshless methods and Their Numerical 

Properties gives complete mathematical formulations for the most important 

and classical methods. 

 

In this research, the meshless local Pretov-Galerkin (MLPG) method  

with the test function in view of the Kronecker delta function based on the 

moving Kriging approximation(MKA) method is proposed for solving the 

two-dimensional coupled nonlinear Burgers’ equations[Srivastava, 2011] of 

the form, 

 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
=

1

𝑅𝑒
(

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
), 

  
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
=

1

𝑅𝑒
(

𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
), 

(1.1) 

where  𝑢(𝑥, 𝑦, 𝑡)  and 𝑣(𝑥, 𝑦, 𝑡) are velocity components to be determine and 

𝑅𝑒 is the Reynolds number. 

 

Constructing of shape functions is one of the most important issues in the MLPG 

method. Development of more effective methods for constructing shape functions 

have been one of the most active areas of research. There are many methods for 

constructing a shape function such as the moving least square (MLS) and the 

weighted least square (WLS) method. The most popular method is the moving 

least square. Although the MLPG method and many other meshless methods have 
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been gradually applied to different fields, There exists an inconvenience because 

of the difficulty in implementing some essential boundary conditions; the shape 

function constructed by MLS approximation does not satisfy the Kronecker delta 

function property. Recently, we have tried to use the moving kriging 

approximation technique to construct meshless shape functions. The moving 

kriging approximation procedure originally employed in geostatistics by using 

known values and a semivariogram to determine unknown values. This 

mathematical model is name after Krige (Sack, 1989) who introduced the initial 

version of this spatial prediction process. The moving kriging approximation has 

two advantage; (1) the Kronecher delta property and (2) the consistency property. 

 

These advantage enhance  the accuracy of the estimation.two-dimensional 

coupled nonlinear Bugers’ equations is proposed to be solved by the local 

integral equation formulation and one-step time discretization method by 

using the Crank-Nicolson methods. The boundary and domain integrals are 

calculated using Gauss-Legendre quadrature method. Two numerical 

examples are considered in order to verify the proposed method with testing 

its convergence and accuracy. 

 

1.2 Literature Review 

There are many researchers  who developed the numerical methods for 

solving the two-dimensional Burgers’ nonlinear differential equations. 

Biazar (2009) proffered the variation iteration method(VIM) to solve the 

nonlinear Burgers’ equations. This method is a powerful tool for solving a large 

number of problems. Using variational iteration method, it is possible to find 

the exact solution or a closed approximate solution of problem. Comparing  

the results with those of Adomain’s decomposition and finite difference 

methods reveals significant points. To illustrate the ability and reliability of 

the method, some example are provided. 

Zhu (2010) proposed the discrete Adomain decomposition method (ADM) 

for solving the two-dimensional Burgers’ nonlinear differential equations. 

Two test problems are considered to illustrate the accuracy of the proposed 

discrete decomposition method. The numerical results are in good agreement 

with the exact solutions for each problem. 

Abdul-Zahra (2012) presented an extension of exponential function method 

in rational form to find an exact solution of coupled Burgers’equation. This 

extended exponential function method in rational form allows us to find 
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extra travelling wave solutions of coupled Burgers’equation instead of 

exponential function method in rational form. 

Srivastava (2011) proposed scheme forms a system of nonlinear algebraic 

difference equations to be solved two-dimensional Burgers’ equation at each 

time step. To linearize the non-linear system of equations, Newton’s method 

is used. The obtained linear system is then solved by Gauss elimination with 

partial pivoting. The proposed scheme is unconditionally stable and second 

order accurate in both space and time. Numerical results are compared with 

those of exact solutions and other available results for different values of 

Reynolds number. The proposed method canbe easily implemented for 

solving nonlinear problems evolving in several branches of engineering and 

science. 

 

1.3 Objective of Research 

The purpose of this study is to develop a numerical algorithm using  
the Meshless Local Petrov-Galerkin (MLPG) method for solving the two-
dimensional Burgers’ nonlinear differential equations to increase accuracy. 
 
1.4 Scope of Research 
 
1.  The equations are needed to be studied as the two-dimensional Burgers’ 

nonlinear differential equations. 

2.  A procedure for the numerical solution is developed by the local integral 

equation to solve coupled nonlinear reaction-diffusion equations by using 

moving Kriging approximation. 

 

1.5 Advantage of  Research 

 

The meshless method, which is developed, is a numerical procedure for 

solving coupled nonlinear reaction-diffusion equations and correspond to the 

boundary conditions problem. 
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CHAPTER2 
THEORICAL AND BLACKGROUND  

  
The theories, that related to this research, have been divided into 5 sections such 
as governing equation, moving kriging interpolation method, Gauss-Legendre 
quadrature Method , temporal discretization by the Crank-Nicolson method, and 
finally MLPG Upwinding Scheme I. 
 

2.1  The  Governing  Equation 
  

The two-dimensional  coupled Burgers’equation  are as following  

 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
−
1

𝑅𝑒
(
𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
) = 0, 

𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
−
1

𝑅𝑒
(
𝜕2𝑣

𝜕𝑥2
+
𝜕2𝑣

𝜕𝑦2
) = 0, 

(2.1) 

subject to the initial conditions 

      𝑢(𝑥, 𝑦, 0) = 
1
(𝑥, 𝑦); (𝑥, 𝑦) ∈ , 

𝑣(𝑥, 𝑦, 0) = 
2
(𝑥, 𝑦); (𝑥, 𝑦) ∈ , 

and boundary conditions 

𝑢(𝑥, 𝑦, 𝑡) = 
1
(𝑥, 𝑦); (𝑥, 𝑦) ∈ 𝜕, 𝑡 > 0, 

𝑣(𝑥, 𝑦, 𝑡) = 
2
(𝑥, 𝑦); (𝑥, 𝑦) ∈ 𝜕, 𝑡 > 0, 

where  = {(𝑥, 𝑦): 𝑎 ≤ 𝑥 ≤ 𝑏, 𝑐 ≤ 𝑦 ≤ 𝑑} and 𝜕  is its boundary ; 𝑢(𝑥, 𝑦, 𝑡) and  

𝑣(𝑥, 𝑦, 𝑡) are the velocity components to be determined, 
1
, 

2
, 
1

 and 
2

 are 

known functions and 𝑅𝑒  is the Reynolds number. 

2.2  Moving Kriging  Interpolation Method 
 

The kriging interpolation is a well-known geostatic technique for spatial 

interpolation in geology and mining (Lei, 2003).The formulation of the 

construction of meshless shape function by moving kriging approximation (MKA) 

is introduced briefly in the following.Similar to the MLS approximation, Consider 

the function 𝑢(𝒙) defined in the domain Ω  discretized by a set of properly 

scattered nodes   𝒙𝑖 , (𝑖 = 1,2, … , 𝑛), where 𝑛 is the total number of nodes in the 

whole domain. It is assumed that only 𝑁 nodes surrounding point 𝒙 have the effect 

on 𝑢(𝒙).The sub-domain Ω𝒙 that encompasses these surrounding nodes is called 

the interpolation domain of point 𝒙. The MKA 𝑢ℎ(𝒙) at point 𝒙 is defined as 

presented in (Chen, 2011). Therefore the formulation of the meshless shape 

function using MKA is given by  
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 𝑢ℎ(𝒙) =∑ 
𝐼

𝑁

𝐼=1

(𝒙)𝑢𝐼 = (𝒙)𝒖        , 𝒙Ω𝒙   (2.2) 

 
where  𝒖 = [𝑢(𝒙1)  𝑢(𝒙2)⋯𝑢(𝒙𝑁)]

𝑇  is a vector value of the function  in the 
domain Ω.  (𝒙)  is a 1 × 𝑁 vector of shape functions, expressed as: 
 

 (𝒙) = 𝒑𝑇(𝒙)𝑨 + 𝒓𝑇(𝒙)𝑩,    (2.3) 

 
where  matrices 𝑨 and 𝑩 are defined as:  
   

 
𝑨 = (𝑷𝑇𝑹−1𝑷)−1𝑷𝑇𝑹−1,  

𝑩 = 𝑹−1(𝑰 − 𝑷𝑨). 
(2.4) 

 
In which I   is a unit matrix of size 𝑁𝑁, and vector  𝒑(𝒙)  is: 
 

 𝒑𝑇(𝒙) = [𝑝1(𝒙1) ⋯ 𝑝𝑚(𝒙𝑁)]. (2.5) 

 
In general, a linear basis in two-dimensional space is: 
 

 𝒑𝑇(𝒙) = (1, 𝑥, 𝑦),   𝑚 = 3  ,  

a quadratic basis is given as 
 

𝒑𝑇(𝒙) = (1, 𝑥, 𝑦, 𝑥2, 𝑥𝑦, 𝑦2),   𝑚 = 6, 

and a cubic basis is 

 𝒑𝑇(𝒙) = (1, 𝑥, 𝑦, 𝑥2, 𝑥𝑦, 𝑦2, 𝑥3, 𝑥2𝑦, 𝑥𝑦2, 𝑦3),   𝑚 = 10.  

For matrix 𝑷  with the size  𝑁 𝑚 , values of the polynomial basis functions (2.5) at 
the given set of nodes are collected: 

 

 

 𝑷 = [
𝑝1(𝒙1) ⋯ 𝑝𝑚(𝒙1)
⋯ ⋯ ⋯

𝑝1(𝒙𝑁) ⋯ 𝑝𝑚(𝒙𝑁)
]. (2.6) 

 
Matrices 𝑹 and vector 𝒓(𝒙) are defined by the following equations: 
 

 𝑹 =   [
𝛾(𝒙1, 𝒙1) ⋯ 𝛾(𝒙1, 𝒙𝑁)

⋯ ⋯ ⋯
𝛾(𝒙𝑁 , 𝒙1) ⋯ 𝛾(𝒙𝑁, 𝒙𝑁)

],  
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 𝒓𝑇(𝒙) =   [𝛾(𝒙, 𝒙1)  ⋯   𝛾(𝒙, 𝒙𝑁)],  

where  𝛾(𝒙𝑖, 𝒙𝑗)  is the correlation function between any pair of nodes located at  𝒙𝑖 

and  𝒙𝑗 , representing the covariance of the field value 𝑢(𝒙) , i.e. 

 
 

𝛾(𝒙𝑖, 𝒙𝑗)  =   𝐸[𝑢(𝒙𝑖) 𝑢(𝒙𝑗) ], (2.7) 

 
Similarly, the covariance  𝐸[𝑢(𝒙𝑖) 𝑢(𝒙𝑗) ] can be replaced by 𝛾(𝒙, 𝒙𝑗). It can be seen 

from the foregoing formulations that the values of matrices 𝑹 and 𝒓 play important 
roles in the computation. A simple and frequently- used correlation function is a 
Gaussian function: 
 

𝛾(𝒙𝑖, 𝒙𝑗) = 𝑒
−𝜃𝑟𝑖𝑗

2

,                                         (2.8) 

where   𝑟𝑖𝑗 = ‖𝒙𝑖 − 𝒙𝑗‖  and   > 0 are the correlation parameters used to fit the 

model and are assumed to be given. 
 
The first-order partial derivatives of the shape function (𝒙) against the 
coordinates 𝒙𝑖, 𝑖 = 1,2 can be easily obtained from Eq. (2.3) 
 

 ,𝑖(𝒙) = 𝒑,𝑖
𝑇(𝒙)𝑨 + 𝒓,𝑖

𝑇(𝒙)𝑩, (2.9) 

 
where  (∙),𝑖 denotes  𝜕(∙)/𝜕𝑥𝑖 . 
 

The shape function obtained from the moving kriging approximation possesses the 

following delta function property: 

 𝐼(𝒙𝐽) = 𝛿𝐼𝐽 = {
1, (𝐼 = 𝐽, 𝐼 = 1,2, … ,𝑁)

0, (𝐼 ≠ 𝐽, 𝐼, 𝐽 = 1,2, … ,𝑁)
 (2.10) 

The moving kriging approach is an exact interpolator, and its shape functions can 

exactly reproduce any function included in the basis. In particular, if all constants 

and linear terms are included, it reproduces a general linear polynomial exactly, 

that is, 

 

∑𝐼(𝒙)

𝑁

𝐼=1

= 1

∑𝐼(𝒙)

𝑁

𝐼=1

𝑥𝐼 = 𝑥

∑𝐼(𝒙)

𝑁

𝐼=1

𝑦𝐼 = 𝑦
}
 
 
 
 

 
 
 
 

.   (2.11) 
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2.3 Gauss-Legendre Quadrature Method 
 

For 1-D, Let 𝑥𝑖  be nodes and 𝑤𝑖 be weights. The quadrature techniques formulation 

is following as (Abbott, 2005): 

 𝐼1 = ∫ 𝑓(𝑥)𝑑𝑥,
𝑏

𝑎

 (2.12) 

where 𝑓(𝑥) be a polynomial of order 2n-1. Let [a,b] be [-1,1] can be  accomplished 

by scaling. 

 ∫ 𝑓(𝑥)𝑑𝑥 = ∫ 𝑔()𝑑 ≈∑𝑤𝑖

𝑛

𝑖=1

1

−1

1

−1

𝑔𝑖 (2.13) 

where   be transformation of variable 𝑥 and 𝑔() be transformation of variable 𝑥. 

For 2-D, Let 𝑥𝑖 and 𝑦𝑖 , 𝑖 = 1,2, … , 𝑛 are nodes and  𝑤𝑖 and  𝑤𝑗  are weights. 

The quadrature   techniques formulation is following as : 

        𝐼2 = ∫ 𝑓(𝑥, 𝑦)𝑑
𝑏

𝑎

= ∫ ∫ 𝑔(,)𝑑
1

−1

1

−1

𝑑 ≈ ∫ 𝐼1

1

−1

𝑑 

 = ∫ ∑𝑤𝑖

𝑛

𝑖=1

1

−1

𝑔𝑖𝑑 ≈∑𝑤𝑗 (∑𝑤𝑖

𝑛

𝑖=1

𝑔𝑖𝑗) =∑∑𝑤𝑖𝑤𝑗

𝑛

𝑖=1

𝑛

𝑗=1

𝑛

𝑗=1

𝑔𝑖𝑗 , 

where 
𝑖
,
𝑗
 are transformation of variables and  𝑔𝑖𝑗 is transformation function. 

Calculating for weight 

If we change the boundary condition form [-1,1]. We defined 

𝑥 = 𝐶0 + 𝐶1, 

where  𝐶0, 𝐶1 are unknown constants. 

𝑎 = 𝐶0 + 𝐶1(−1), 

 𝑏 = 𝐶0 + 𝐶1(−1),  

 𝐶0   =    
|
𝑎 −1
𝑏 1

|

|
1 −1
1 1

|
   =    

𝑎 + 𝑏

1 + 1
   =    

𝑎 + 𝑏

2
,  
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 𝐶1   =    
|
1 𝑎
1 𝑏

|

|
1 −1
1 1

|
   =    

𝑏 − 𝑎

1 + 1
   =    

𝑏 − 𝑎

2
,  

Hence   

𝑥 = (
𝑎 + 𝑏

2
) + (

𝑏 − 𝑎

2
)  , 𝑑𝑥 = (

𝑏 − 𝑎

2
)𝑑 

𝐼 = ∫ 𝑓(𝑥)𝑑𝑥 = ∫ 𝑓() (
𝑏 − 𝑎

2
)𝑑 ≈ (

𝑏 − 𝑎

2
)

1

−1

𝑏

𝑎

∑𝑤𝑖

𝑛

𝑖=1

𝑓(𝑖)  

 

For 2-D, we used Gauss-Legendre polynomial (1, ,2,3) then 

𝑤1𝑓(1) + 𝑤2𝑓(2) = ∫ 1𝑑 = 2
1

−1

, 

𝑤1𝑓(1) + 𝑤2𝑓(2) = ∫ 𝑑 = 0,
1

−1

 

𝑤1𝑓(1) + 𝑤2𝑓(2) = ∫ 2𝑑 =
2

3

1

−1

, 

𝑤1𝑓(1) + 𝑤2𝑓(2) = ∫ 3𝑑 = 0
1

−1

. 

Hence 

𝑤1𝑓(1) + 𝑤2𝑓(1) = 2, 

𝑤1𝑓(1) + 𝑤2𝑓(2) = 0, 

   𝑤1𝑓(1
2) + 𝑤2𝑓(2

2) =
2

3
,  

                𝑤1𝑓(1
3) + 𝑤2𝑓(2

3) = 0. 

The answers of equation (2.44) are 𝑤1 = 𝑤2 = 1, 1 = −
√3

2
 and 2 =

√3

2
.  Some 

low-order rules for solving the integration problem are listed table1. 
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Table 2.1 abscissas and weights for Gaussian quadrature. 

Number of points, 𝑛 Points, 𝑥𝑖  Weights, 𝑤𝑖 
1 0 2 

2 ±
√3

2
 1 

3 

0 
8

9
 

±√
3

5
 

5

9
 

4 

±√
(3 − 2√6/5)

7
 

18 + √30

36
 

±√
(3 + 2√6/5)

7
 

18 − √30

36
 

5 

0 
128

225
 

±
1

3
√5 − 2√10/7 

322 + 13√70

900
 

±
1

3
√5 − 2√10/7 

322 − 13√70

900
 

 

2.4 Temporal Discretization by The Crank–Nicolson method 

The Crank–Nicolson method is based on the trapezoidal rule, giving second-order 
convergence in time. For example, in one dimension, if the partial differential 
equation is 
 

 
𝜕𝑢

𝜕𝑡
= 𝐹 (𝑢, 𝑥, 𝑡,

𝜕𝑢

𝜕𝑥
,
𝜕2𝑢

𝜕𝑥2
), (2.14) 

then, letting 𝑢(𝑖∆𝑥, 𝑛∆𝑡) = 𝑢𝑖
𝑛, the equation for Crank–Nicolson method is a 

combination of the forward Euler method at 𝑛  and the backward Euler method at 

𝑛 +  1 (note, however, that the method itself is not simply the average of those two 
methods, as the equation has an implicit dependence on the solution): 

 
𝑢𝑖
𝑛+1 − 𝑢𝑖

𝑛

∆𝑡
= 𝐹𝑖

𝑛 (𝑢, 𝑥, 𝑡,
𝜕𝑢

𝜕𝑥
,
𝜕2𝑢

𝜕𝑥2
),   
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𝑢𝑖
𝑛+1 − 𝑢𝑖

𝑛

∆𝑡
= 𝐹𝑖

𝑛+1 (𝑢, 𝑥, 𝑡,
𝜕𝑢

𝜕𝑥
,
𝜕2𝑢

𝜕𝑥2
),  

 
 
Hence (Eq.(2.45)+Eq.(2.46))/2 reveals in Eq.(2.47), 

 

 

𝑢𝑖
𝑛+1 − 𝑢𝑖

𝑛

∆𝑡
=
1

2
[𝐹𝑖

𝑛+1 (𝑢, 𝑥, 𝑡,
𝜕𝑢

𝜕𝑥
,
𝜕2𝑢

𝜕𝑥2
)

+ 𝐹𝑖
𝑛 (𝑢, 𝑥, 𝑡,

𝜕𝑢

𝜕𝑥
,
𝜕2𝑢

𝜕𝑥2
)], 

(2.15) 

                                                  
 

 
 
 
 
 
 
 
 
 
 
Figure2.1    The Crank–Nicolson stencil for a 1-D problem 
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2.5   MLPG Upwinding Scheme I 
 
The MLPG method is based on the Petrov-Galerkin weighted  residual 
procedures. Different spaces for the test and trial 
functions can be used, as shown in Figure 2.2 (Atluri, 2004) 

 

 

 

 

 

 

 

 

Figure 2.2 :  The MLPG Method without Upwinding. 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 :  MLPG Upwinding Scheme I (US-I). 

 

 

 

 

Figure 2.4 : MLPG Upwinding Scheme I (US-I): Specification. 

 

 

 

DP
U



12 
 

Therefore one of the very natural ways to construct upwinding schemes is to 

choose different trial and test functions. This can be done by a lot of ways. For 

example, in order to apply  upwinding in the streamline direction, we can skew the 

test function opposite to the streamline direction as shown in Figure 2.3. For 

convenience, we denote this as upwinding scheme I (US I). As an illustration, we 

choose a skewed weight function as the test function. The skewed weight function 

is given as follows: using the same form of weight function, we shift the position of 

the maximum of 𝑤𝑖(𝒙) from 𝒙𝑖 to 𝒙𝑖- 𝛾𝑟𝑖𝑠𝑖, as shown in Figure 2.4, where, 𝑠𝑖 is the 

unit vector of the streamline direction at 𝒙𝑖, 𝑟𝑖 is the size of the support for the test 

functions at 𝒙𝑖, and 𝛾 is given by 

 𝛾 =
1

2
𝑐𝑜𝑡ℎ (

𝑃𝑒

2
) −

1

𝑃𝑒
 (2.16) 

in which 𝑃𝑒 is a local Peclet number defined as: 

 𝑃𝑒 =
𝑢𝑟𝑖
𝑘
   𝑜𝑟  

advective transport rate

diffusive transport rate
  (2.17) 

The size of the support for the trial functions also equal to 𝑟𝑖 at  𝒙𝑖, and the local 
sub-domain at 𝒙𝑖 is coincided with the support  for the test functions  
at 𝒙𝑖. 
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CHAPTER3  
METHODOLOGY 

 
3.1   Space Discretization by MLPG Method with a Kronecher Delta  Function  (MLPG2) 

 
The local integral formulation of Eq.(2.1) are as following 

 

∫
𝜕𝑢

𝜕𝑡
s

i

𝑤𝑖𝑑𝑡 =
1

𝑅𝑒
∫ ∇2𝑢

s
i

𝑤𝑖𝑑𝑡 − ∫ 𝑢

s
i

𝜕𝑢

𝜕𝑥
𝑤𝑖𝑑𝑡 − ∫ 𝑣

s
i

𝜕𝑢

𝜕𝑦
𝑤𝑖𝑑𝑡, 

∫
𝜕𝑣

𝜕𝑡
s

i

𝑤𝑖𝑑𝑡 =
1

𝑅𝑒
∫ ∇2𝑣

s
i

𝑤𝑖𝑑𝑡 − ∫ 𝑢

s
i

𝜕𝑣

𝜕𝑥
𝑤𝑖𝑑𝑡 − ∫ 𝑣

s
i

𝜕𝑣

𝜕𝑦
𝑤𝑖𝑑𝑡. 

(3.1) 

Let 𝑢̃(𝒙, 𝑡) and 𝑣̃(𝒙, 𝑡), which substitute 𝑢(𝒙, 𝑡) and  𝑣(𝒙, 𝑡)  respectively, be the trial 

solutions. 

 𝑢̃(𝒙, 𝑡) = ∑ 
𝑗

𝑁

𝑗=1

(𝒙)𝑢̂𝑗(𝑡),   𝑣̃𝑗(𝒙, 𝑡) = ∑ 
𝑗

𝑁

𝑗=1

(𝒙)𝑣̂𝑗(𝑡),  

For internal nodes, from local integral equations (3.1), we have the following nonlinear 

equations: 

∑ ∫ 
𝑗
(𝒙)𝑤𝑑

𝜕𝑢̂𝑗

𝜕𝑡
s

i

𝑁

𝑗=1

= ∑ ∫
1

𝑅𝑒
(

𝑗,𝑥𝑥
(𝒙) + 

𝑗,𝑦𝑦
(𝒙)) 𝑤𝑑𝑢̂𝑗

s
i

𝑁

𝑗=1

 

 − ∑ ∫ 
𝑗,𝑥

(𝒙)𝑢(𝒙)

s
i

𝑁

𝑗=1

𝑤𝑑𝑢̂𝑗  (3.2) 

                                           − ∑ ∫ 
𝑗,𝑦

(𝒙)𝑣(𝒙)

s
i

𝑁

𝑗=1

𝑤𝑑𝑢̂𝑗. 

Similarly, we have 

 

∑ ∫ 
𝑗
(𝒙)𝑤𝑑

𝜕𝑣𝑗

𝜕𝑡
s

i

𝑁

𝑗=1

= ∑ ∫
1

𝑅𝑒
(

𝑗,𝑥𝑥
(𝒙) + 

𝑗,𝑦𝑦
(𝒙)) 𝑤𝑑𝑣̂𝑗

s
i

𝑁

𝑗=1

 

 − ∑ ∫ 
𝑗,𝑥

(𝒙)𝑢(𝒙)

s
i

𝑁

𝑗=1

𝑤𝑑𝑣𝑗    (3.3) 
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− ∑ ∫ 
𝑗,𝑦

(𝒙)𝑣(𝒙)

s
i

𝑁

𝑗=1

𝑤𝑑𝑣̂𝑗 , 

where 𝑤𝑖 is a Kronecher delta function used as the test function: 

 

 𝑤𝑖(𝒙) = {
1 , 𝒙 = 𝒙𝒊

0 , 𝒙 ≠ 𝒙𝒊,
 (3.4) 

 

Eqs.(3.2) and (3.3) can be written as: 

∑ 
𝑗
(𝒙𝒊)

𝜕𝑢̂𝑗

𝜕𝑡
= ∑

1

𝑅𝑒
(

𝑗,𝑥𝑥
(𝒙𝒊) + 

𝑗,𝑦𝑦
(𝒙𝒊)) 𝑢̂𝑗 − ∑ 

𝑗,𝑥
(𝒙𝒊)𝑢(𝒙𝒊)𝑢̂𝑗

𝑁

𝑗=1

𝑁

𝑗=1

𝑁

𝑗=1

 

 

 

              − ∑ 
𝑗,𝑦

(𝒙𝒊)𝑣(𝒙𝒊)𝑢̂𝑗

𝑁

𝑗=1

, 
(3.5) 

∑ 
𝑗
(𝒙𝒊)

𝜕𝑣𝑗

𝜕𝑡
= ∑

1

𝑅𝑒
(

𝑗,𝑥𝑥
(𝒙𝒊) + 

𝑗,𝑦𝑦
(𝒙𝒊)) 𝑣𝑗 − ∑ 

𝑗,𝑥
(𝒙𝒊)𝑢(𝒙𝒊)𝑣̂𝑗

𝑁

𝑗=1

𝑁

𝑗=1

𝑁

𝑗=1

 

                 − ∑ 
𝑗,𝑦

(𝒙𝒊)𝑣(𝒙𝒊)𝑣̂𝑗

𝑁

𝑗=1

, (3.6) 

Because of  𝑢(𝒙𝒊) = 𝑢̂𝑖  and   𝑣(𝒙𝒊) = 𝑣𝑖 , Eqs.(3.5) and (3.6) are as the following 

∑ 
𝑗
(𝒙𝒊)

𝜕𝑢̂𝑗

𝜕𝑡
= ∑

1

𝑅𝑒
(

𝑗,𝑥𝑥
(𝒙𝒊) + 

𝑗,𝑦𝑦
(𝒙𝒊)) 𝑢̂𝑗 − ∑ 

𝑗,𝑥
(𝒙𝒊)𝑢̂𝑖𝑢̂𝑗

𝑁

𝑗=1

𝑁

𝑗=1

𝑁

𝑗=1

 

                − ∑ 
𝑗,𝑦

(𝒙𝒊)𝑣̂𝑖 𝑢̂𝑗

𝑁

𝑗=1

, (3.7) 

∑ 
𝑗
(𝒙𝒊)

𝜕𝑣𝑗

𝜕𝑡
= ∑

1

𝑅𝑒
(

𝑗,𝑥𝑥
(𝒙𝒊) + 

𝑗,𝑦𝑦
(𝒙𝒊)) 𝑣𝑗 − ∑ 

𝑗,𝑥
(𝒙𝒊)𝑢̂𝑖𝑣𝑗

𝑁

𝑗=1

𝑁

𝑗=1

𝑁

𝑗=1

 

               − ∑ 
𝑗,𝑦

(𝒙𝒊)𝑣̂𝑖 𝑣𝑗

𝑁

𝑗=1

, (3.8) 

Eqs.(3.7) and (3.8) can be written as: 

 

 
∑ 

𝑗
(𝒙𝒊)

𝜕𝑢̂𝑗

𝜕𝑡
= ∑ [(1/𝑅𝑒) (

𝑗,𝑥𝑥
(𝒙𝒊) + 

𝑗,𝑦𝑦
(𝒙𝒊))

𝑁

𝑗=1

𝑁

𝑗=1

− 
𝑗,𝑥

(𝒙𝒊)𝑢̂𝑖  −
𝑗,𝑦

(𝒙𝒊)𝑣𝑖] 𝑢̂𝑗 , 

(3.9) 
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∑ 

𝑗
(𝒙𝒊)

𝜕𝑣𝑗

𝜕𝑡
= ∑ [(1/𝑅𝑒) (

𝑗,𝑥𝑥
(𝒙𝒊) + 

𝑗,𝑦𝑦
(𝒙𝒊))

𝑁

𝑗=1

𝑁

𝑗=1

− 
𝑗,𝑥

(𝒙𝒊)𝑢̂𝑖  −
𝑗,𝑦

(𝒙𝒊)𝑣̂𝑖] 𝑣𝑗 . 

(3.10) 

 

The following abbreviations have been used for the integral term: 

𝐴𝑖𝑗 = 
𝑗
(𝒙𝒊), 

𝐵𝑖𝑗 = (1/𝑅𝑒) (
𝑗,𝑥𝑥

(𝒙𝒊) + 
𝑗,𝑦𝑦

(𝒙𝒊)) − 
𝑗,𝑥

(𝒙𝒊)𝑢̂𝑖−𝑗,𝑦
(𝒙𝒊)𝑣𝑖. 

 

Eqs. (3.9) and (3.10) can be transformed into matrices form as: 

 𝑨
𝜕𝑼

𝜕𝑡
= 𝑩(𝑼, 𝑽)𝑼, (3.11) 

 𝑨
𝜕𝑽

𝜕𝑡
= 𝑩(𝑼, 𝑽)𝑽, (3.12) 

 

where     𝑨 = [𝐴𝑖𝑗]
𝑁×𝑁

 , 𝑩 = [𝐵𝑖𝑗]
𝑁×𝑁

 , 𝑼̂ = [𝑢̂1 𝑢̂2 ⋯    𝑢̂𝑁]′  and  𝑽̂ =

[𝑣1 𝑣2 ⋯    𝑣𝑁]′. 

 

The finite-difference approximation of time derivatives of Eqs.(3.11) and (3.12) in the 𝜃 

method is given as follows: 

 

 
𝑈𝑘+1 − 𝑈𝐾

∆𝑡
= 𝜃𝐵(𝑈𝑘+1, 𝑉𝑘+1)𝑈𝑘+1 + (1 − 𝜃)𝐵(𝑈𝑘, 𝑉𝑘)𝑈𝑘 , (3.13) 

 
𝑉𝑘+1 − 𝑉𝐾

∆𝑡
= 𝜃𝐵(𝑈𝑘+1, 𝑉𝑘+1)𝑉𝑘+1 + (1 − 𝜃)𝐵(𝑈𝑘, 𝑉𝑘)𝑉𝑘, (3.14) 

 

Eqs. (3.13) and (3.14) can be written as: 

 

[𝐼 − ∆𝑡𝜃𝐵(𝑈𝑘+1, 𝑉𝑘+1)]𝑈𝑘+1 = [𝐼 + ∆𝑡(1 − 𝜃)𝐵(𝑈𝑘, 𝑉𝑘)]𝑈𝑘          (3.15) 

    [𝐼 − ∆𝑡𝜃𝐵(𝑈𝑘+1, 𝑉𝑘+1)]𝑉𝑘+1 = [𝐼 + ∆𝑡(1 − 𝜃)𝐵(𝑈𝑘, 𝑉𝑘)]𝑉𝑘           (3.16) 

Because of  𝑩 are nonlinear functions of 𝑈 and 𝑉, we solve them iteratively in each time 

step with replacing 𝑩𝑘+1 by  𝑩𝑘, respectively, at zeroth iteration 

(𝑈𝑘+1,0 = 𝑈𝑘, 𝑉𝑘+1,0 = 𝑉𝑘).  Eqs. (3.15) and (3.16) are converted into a set of nonlinear 

algebraic equation for unknowns  𝑼̂𝑘+1 and 𝑽̂𝑘+1. 
 

𝑈𝑘+1,𝑙+1 = [𝐼 − ∆𝑡𝜃𝐵(𝑈𝑘+1,𝑙, 𝑉𝑘+1,𝑙)]−1[𝐼 + ∆𝑡(1 − 𝜃)𝐵(𝑈𝑘, 𝑉𝑘)]𝑈𝑘   (3.17) 

 

𝑉𝑘+1,𝑙+1 = [𝐼 − ∆𝑡𝜃𝐵(𝑈𝑘+1,𝑙, 𝑉𝑘+1,𝑙)]−1[𝐼 + ∆𝑡(1 − 𝜃)𝐵(𝑈𝑘, 𝑉𝑘)]𝑉𝑘   (3.18) 
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 CHAPTER 4  
NUMERICAL EXPERIMENTS 

 

In this chapter, some numerical results are presented to verify this approach which 

compares to an exact solution and the previous research. 

 

4.1 Example 1 

In the following example, we consider the 2D Burgers' equations, with the initial 
conditions 𝑢(𝑥, 𝑦, 0) = 𝑥 + 𝑦  , 𝑣(𝑥, 𝑦, 0) = 𝑥 − 𝑦  and the exact solutions are as follows 
(Bahadir, 2003): 

𝑢(𝑥, 𝑦, 𝑡) =
𝑥 + 𝑦 − 2𝑥𝑡

1 − 2𝑡2
, 

𝑣(𝑥, 𝑦, 𝑡) =
𝑥 − 𝑦 − 2𝑦𝑡

1 − 2𝑡2
. 

 

The computational domain has been taken as  = {(𝑥, 𝑦): 0 ≤ 𝑥 ≤ 0.5,0 ≤ 𝑦 ≤ 0.5}. 

The results have been obtained using  𝑅𝑒 = 1, 𝑁 = 441,  ∆𝑡 = 0.0001 at time instant 

 𝑡 = 0.1  and  𝑡 = 0.4, respectively. It is clear that the results from the present study are in 

good agreement with the exact solution (see in table 4.1-4.4). Perspective views of 𝑢 and 𝑣 

are given in Fig.4.2. The exact and numerical solutions of 𝑢 and 𝑣  coincide (see in Figure 

4.1-4.2). In addition, the proposed method achieves similar results given by (Zhu,2010). 

 

4.2 Example 2  

For the first example consider the following system of nonlinear PDEs in the region 

  = [0,1] × [0,1]. A solution of Bugers equation was given by Fletcher (Srivastava, 2011) 

using the Hopf-Cole as follows: 

 

𝑢(𝑥, 𝑦, 𝑡) =
3

4
−

1

4 [1 + 𝑒𝑥𝑝 (
(−4𝑥 + 4𝑦 − 𝑡)𝑅

32 )]
, 

𝑣(𝑥, 𝑦, 𝑡) =
3

4
+

1

4[1 + 𝑒𝑥𝑝((−4𝑥 + 4𝑦 − 𝑡)𝑅/32)]
. 

 

The results have been obtain using 𝑅𝑒 = 10, 80 and ∆𝑡 = 0.0001 at time instant  

t =0.05 and t =0.2, respectively. Table5 and Fig.4.4 show the results for 𝑅𝑒 = 10.  

The numerical solutions are similar to the exact solution. For tables 4.6-4.7, the results 

for 𝑅𝑒 = 80 demonstrate that the developed method achieves similar results given by  

(Zhu, 2010). Perspective views of 𝑢 and 𝑣 for 𝑅𝑒 = 80 at   ∆𝑡 = 0.0001 are given in 

Figure 4.5. In case of  𝑅𝑒 = 500, ∆𝑡 = 0.01 at time instant 𝑡 = 0.5 with applying 

upwinding scheme I, the numerical solutions are similar to the exact solution and the 

previous research (Srivastava, 2011)   (see in table 4.8 and Figure 4.6). However, the 

absolute errors of 𝑢 and 𝑣 in this research seem to be less than the previous research 

(see in Figure 4.3). 
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Table 4.1 Comparison among the exact solution, the previous research and numerical 
solution for 𝑢 at 𝑡 = 0.1. 

(𝒙, 𝒚) 𝒖(Exact) 𝒖(Zhu,2010) Present work 
(0.1,0.1) 0.18367 0.18368 0.18367 
(0.3,0.1) 0.34694 0.34694 0.34694 
(0.2,0.2) 0.36735 0.36735 0.36735 
(0.4,0.2) 0.53061 0.53062 0.53061 
(0.1,0.3) 0.38776 0.38776 0.38776 
(0.3,0.3) 0.55102 0.55103 0.55102 
(0.2,0.4) 0.57143 0.57144 0.57143 
(0.3,0.4) 0.65306 0.65307 0.65306 
(0.5,0.5) 0.91837 0.91838 0.91837 

 
Table 4.2 Comparison among the exact solution, the previous research and numerical 
solutions for 𝑣 at 𝑡 = 0.1. 
 

(𝒙, 𝒚) 𝒗(Exact) 𝒗(Zhu,2010) Present work 
(0.1,0.1) -0.02041 -0.02041 -0.02041 
(0.3,0.1) 0.18367 0.18368 0.18367 
(0.2,0.2) -0.04082 -0.04082 -0.04082 
(0.4,0.2) 0.16327 0.16327 0.16327 
(0.1,0.3) -0.26531 -0.26531 -0.26531 
(0.3,0.3) -0.06122 -0.06123 -0.06122 
(0.2,0.4) -0.28571 -0.28572 -0.28571 
(0.3,0.4) -0.18367 -0.18368 -0.18367 
(0.5,0.5) -0.10204 -0.10205 -0.10204 

 

 
Table 4.3 Comparison among the exact solution, the previous research and numerical 
solutions for 𝑢 at 𝑡 = 0.4. 
 

(𝒙, 𝒚) 𝒖(Exact) 𝒖(Zhu,2010) Present work 
(0.1,0.1) 0.17647 0.17657 0.17647 
(0.3,0.1) 0.23529 0.23585 0.23529 
(0.2,0.2) 0.35294 0.35314 0.35294 
(0.4,0.2) 0.41176 0.41242 0.41176 
(0.1,0.3) 0.47059 0.47044 0.47059 
(0.3,0.3) 0.52941 0.52972 0.52941 
(0.2,0.4) 0.64706 0.64701 0.64706 
(0.3,0.4) 0.67647 0.67665 0.67647 
(0.5,0.5) 0.88235 0.88286 0.88235 

 

Table 4.4 Comparison among the exact solution, the previous research and numerical 
solutions for 𝑣 at 𝑡 = 0.4. 
 

(𝒙, 𝒚) 𝒗(Exact) 𝒗(Zhu,2010) Present work 
(0.1,0.1) -0.11765 -0.11729 -0.11765 
(0.3,0.1) 0.17647 0.17657 0.17647 
(0.2,0.2) -0.23529 -0.23458 -0.23529 
(0.4,0.2) 0.05882 0.05928 0.05882 
(0.1,0.3) -0.64706 -0.64574 -0.64706 
(0.3,0.3) -0.35294 -0.35188 -0.35294 
(0.2,0.4) -0.76471 -0.76303 -0.76471 
(0.3,0.4) -0.61765 -0.61610 -0.61765 
(0.5,0.5) -0.58824 -0.58646 -0.58824 
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Figure 4.1: Absolute error of 𝑢 and 𝑣, ∆𝑡 = 0.0001 at time instant  𝑡 = 0.4 : 

(a) Absolute error of 𝑢  ; (b) Absolute error of 𝑣. 
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Figure 4.2 : A numerical illustration of approximation solutions of example2 by the 

developed method at ∆𝑡 = 0.0001 : (a) 𝑢 (𝑥, 𝑦, 0.1) ; (b) 𝑣 (𝑥, 𝑦, 0.1); (c) 𝑢 (𝑥, 𝑦, 0.4); and 

(d)𝑣 (𝑥, 𝑦, 0.4). 
 

 

Table 4.5 Comparison among the exact solution, the previous research and numerical 

solutions for 𝑢 and 𝑣 at  𝑅𝑒 = 10, 𝑁 = 441,   and ∆𝑡 = 0.0001.  
 

(𝒙, 𝒚) 
t = 0.05  t = 0.2 

𝒖 (Exact) 
𝒖 

Present work 
𝒗 (Exact) 

𝒗 

Present work 
𝒖 (Exact) 

𝒖 
Present work 

𝒗 (Exact) 
𝒗 

Present work 

(0.1, 0.1) 0.61525 0.61525 0.88475 0.88475 0.58716 0.58716 0.91284 0.91284 
(0.5, 0.1) 0.58540 0.58540 0.91460 0.91460 0.56127 0.56129 0.93873 0.93871 
(0.9, 0.1) 0.55983 0.55984 0.94016 0.94016 0.54113 0.54111 0.95887 0.95889 
(0.3, 0.3) 0.61525 0.61525 0.88475 0.88475 0.58716 0.58717 0.91284 0.91283 
(0.7, 0.3) 0.58540 0.58540 0.91460 0.91460 0.56127 0.56128 0.93873 0.93872 
(0.1, 0.5) 0.64628 0.64628 0.85372 0.85372 0.61720 0.61721 0.88280 0.88279 
(0.5, 0.5) 0.61525 0.61525 0.88475 0.88476 0.58716 0.58717 0.91284 0.91283 
(0.9, 0.5) 0.58540 0.58540 0.91460 0.91460 0.56127 0.56128 0.93873 0.93872 
(0.3, 0.7) 0.64628 0.64628 0.85372 0.85372 0.61729 0.61720 0.88280 0.88280 
(0.7, 0.7) 0.61525 0.61525 0.88475 0.88475 0.58716 0.58717 0.91284 0.91283 
(0.1, 0.9) 0.67481 0.67481 0.82519 0.82519 0.64817 0.64816 0.85183 0.85184 
(0.5, 0.9) 0.64628 0.64628 0.85372 0.85372 0.61720 0.61720 0.88280 0.88280 
(0.9, 0.9) 0.61525 0.61525 0.88475 0.88475 0.58716 0.58717 0.91284 0.91283 

 
Table 4.6 Comparison among the exact solution, the previous research and numerical 
solutions for 𝑢 using 𝑅𝑒 = 80 and ∆𝑡 = 0.0001. 
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(𝒙, 𝒚) t=0.05 t=0.2 

   Exact 𝑢(Zhu,2010) Present work      Exact 𝑢(Zhu,2010) Present work 

(0.1, 0.1) 0.61720 0.61733  0.61709 0.59438 0.59465 0.59401 
(0.9, 0.2) 0.50020 0.50020 0.50021 0.50014 0.50013 0.49987 
(0.8, 0.3) 0.50148 0.50147 0.50151 0.50102 0.50098 0.50129 
(0.7, 0.4) 0.51052 0.51046 0.51054 0.50733 0.50714 0.50736 
(0.9, 0.5) 0.50398 0.50395 0.50411 0.50275 0.50266 0.50292 
(0.1, 0.6) 0.74811 0.74810 0.74799 0.74725 0.74723 0.74467 
(0.8, 0.6) 0.52667 0.52658 0.52673 0.51896 0.51867 0.51905 
(0.3, 0.7) 0.74492 0.74491 0.74488    0.74267 0.74264 0.74254 
(0.4, 0.7) 0.73665 0.73663 0.73659 0.73103 0.73102 0.73097 
(0.2, 0.8) 0.74930 0.74930 0.74929 0.74898 0.74897 0.74815 
(0.6, 0.8) 0.71676 0.71677 0.71666 0.70439 0.70457 0.70431 
(0.1, 0.9) 0.74990 0.74990 0.75012 0.74986 0.74986 0.74978 
(0.9, 0.9) 0.61720 0.61733 0.61727 0.59438 0.59465 0.59452 

 
Table 4. 7 Comparison among the exact solution, the previous research and numerical 
solutions for 𝑣 using 𝑅𝑒 = 80 and ∆𝑡 = 0.0001. 
 

(𝒙, 𝒚) t=0.05 t=0.2 
   Exact 𝑢(Zhu,2010) Present work      Exact 𝑢(Zhu,2010) Present work 

(0.1, 0.1) 0.88280 0.88267 0.88291 0.90561 0.90534 0.90598 
(0.9, 0.2) 0.99980 0.99980 0.99979 0.99986 0.99987 1.00013 
(0.8, 0.3) 0.99852 0.99853 0.99849 0.99898 0.99902 0.99871 
(0.7, 0.4) 0.98948 0.98954 0.98946 0.99267 0.99286 0.99264 
(0.9, 0.5) 0.99602 0.99605 0.99589 0.99725 0.99734 0.99708 
(0.1, 0.6) 0.75189 0.75190 0.75201 0.75275 0.75277 0.75533 
(0.8, 0.6) 0.97333 0.97342 0.97327 0.98103 0.98133 0.98095 
(0.3, 0.7) 0.75508 0.75509 0.75512    0.75733 0.75736 0.75746 
(0.4, 0.7) 0.76335 0.76336 0.76341 0.76896 0.76898 0.76903 
(0.2, 0.8) 0.75070 0.75070 0.75071 0.75102 0.75103 0.75185 
(0.6, 0.8) 0.78324 0.78323 0.78334 0.79561 0.79543 0.79569 
(0.1, 0.9) 0.75009 0.75009 0.74988 0.75014 0.75014 0.75022 
(0.9, 0.9) 0.88280 0.88267 0.88273 0.90561 0.90534 0.90548 
 

Table 4.8 Comparison among the exact solution, the previous research and numerical 
solutions for 𝑢 and 𝑣 using 𝑅𝑒 = 500 and ∆𝑡 = 0.01 at t=0.5 
 

(𝒙, 𝒚) t=0.5 t=0.5 
   Exact 𝑢(Srivastava,2011) Present work      Exact 𝑣(Srivastava,2011) Present work 

(0.1, 0.1) 0.50010 0.48714 0.50238 0.99990 1.01286 0.99762 
(0.5, 0.1) 0.50000 0.50002 0.50575 1.00000 0.99999 0.99425 
(0.9, 0.1) 0.50000 0.50000 0.49726 1.00000 1.00000 1.00274 
(0.3, 0.3) 0.50010 0.49519 0.50547 0.99990 1.00481 0.99453 
(0.7, 0.3) 0.50000 0.50001 0.50530 1.00000 0.99999 0.99470 
(0.1, 0.5) 0.75000 0.74990 0.74916 0.75000 0.75010 0.75000 
(0.5, 0.5) 0.50010 0.49429 0.50470 0.99990 1.00571 0.99530 
(0.9, 0.5) 0.50000 0.49978 0.50262 1.00000 1.00022 0.99738 
(0.3, 0.7) 0.75000 0.75001 0.74782 0.75000 0.74999 0.75218 
(0.7, 0.7) 0.50010 0.49325 0.50313 0.99990 1.00676 0.99687 
(0.1, 0.9) 0.75000 0.75000 0.748550 0.75000 0.75000 0.75145 
(0.5, 0.9) 0.75000 0.75001 0.74990 0.75000 0.74999 0.75011 
(0.9, 0.9) 0.50010 0.47275 0.50471 0.99990 1.02725 0.99529 
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Figure  4.3  : Absolute error of 𝑢 and 𝑣 ∆𝑡 = 0.01 at time instant 𝑡 = 0.5: 

(a) Absolute error of 𝑢  ; (b) Absolute error of 𝑣. 
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Figure 4.4  :  A numerical illustration of approximation solutions of example1 by the 

developed method at  𝑅𝑒 = 10, ∆𝑡 = 0.0001 : (a) 𝑢 (𝑥, 𝑦, 0.2); and (b)𝑣 (𝑥, 𝑦, 0.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.5 : A numerical illustration of approximation solutions of example1 by the 

developed method at  Re  = 80, ∆𝑡 = 0.0001 : (a) 𝑢 (𝑥, 𝑦, 0.2); and (b)𝑣 (𝑥, 𝑦, 0.2). 
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Figure  4.6  : A numerical illustration of approximation solutions of example1 by the 

developed method at  𝑅𝑒 = 500, ∆𝑡 = 0.01 : (a) 𝑢 (𝑥, 𝑦, 0.5) ; (b) 𝑣 (𝑥, 𝑦, 0.5). 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

The developed MLPG method based on MKA method had been successfully applied to 

solve the solutions of coupled Burger system. The efficiency and accuracy of the 

developed method was demonstrated by two test problems.  

For problem1, it obviously that there are no difference between the exact and the trial 

solutions. For problem2, in case of  𝑅𝑒 = 10 and 80, the numerical results show that the 

developed method is reliable to solve the problem. In addition, the values of  𝑢 and 𝑣 

obtained from the numerical solution close to the exact solution and the previous 

research.  

In case of  𝑅𝑒 = 500, the developed method with upwinding scheme works well. In 

addition, the results of the developed method are closer to the exact solution and the 

previous serearch. 

The developed MLPG method is more efficient than the previous methods. The reasons 

for this is the evidence from the errors of 𝑢 and 𝑣 by the developed method seem to be 

less than the previous method (see in Figures 4.1 and 4.3). 

5.2 Recommendations 

In future works, the MLPG formulations will be developed for solving coupled Burgers’ 

equations in 3-dimensional spaces which satisfy physics and engineering problems. 
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