An Approach to Software Artefact Specification
for Supporting Product Line Systems

Dr. Waraporn Jirapanthong

This research has been funded by
Dhurakij Pundit University
2008

S1UNUNAN5IVY
A
15949

Y Q' a d d d o v v
fnﬁﬁﬁ1\‘]%1'\‘]‘]Jﬁ%ﬂ‘lelg!‘Hﬂcﬁﬂwﬂllﬂﬁﬁ1ﬁﬁﬂﬁuﬂﬁ‘l§u

msnannguaeasuunllsanalasi

Tae

A3. 25105 5TWUEN0S

v
A v

INEITUNIIIVEU ﬁ%ﬂﬂ%@ﬂﬁ%%%]ﬂ

Q Q

D

a

=)

NHINAUFINVVMNAE

W.f. 2551

Abstract

This research is aimed to resolve the difficulties of software specification, particularly
software product line systems. One of the research’s contributions is the meta model for
product line systems. The model is used as the reference model for specifying of
requirements and design artefacts. Moreover, we envisage the use of prototype tool as a
general platform for creating the artefacts. Five tasks were created to demonstrate
different situations of software product line development, involving different types if
documents and different stakeholders. The experiments of artefact creation have been
evaluated by considering two criteria: precision and recall measures; and satisfaction of

users.

UNHAL

Ay A ' A Y Y 1 @ 4 4
QTH’Jﬁ]Elullﬂﬂigﬂﬂumﬂ‘ﬂ%L!ﬂ]’lfU‘]JﬂJU‘l"i1llﬂ$ﬂ31NQQ81ﬂ1uﬂﬁWGJJlH“I)’fJ“V‘I@]LL’Ji Tagmnizms

Y
=

@ o o [4 Ao 9 1 9 o 1 o @
wannsednsuuuTdsdndlad lusuddviiduasldviauemituniiassuesmasiann
s o o s o 7 % A A Ja s o
yonAdsFmTuszuuseduas llsdndlar Falsznoudedelseansimarelduasivy
1 9 1 o Aav Y o A a d a 4 4
a9 TagguaImnuave LIUAUIUITen e ANz UMW Al se AT T WanIs

Y Y o1) 9 A A Ao = P =
HUVANNABINST JALA BT, VOAY, JUA HI0DUNNITUNNANNABINITIALII8aZIDEA
s oAy ¢ Sy vy v
Vo9FNALITNADINITLUAZIONEITNTODNUUUTLUUTNALIT vonnntduasldad
o A A A g Y A A Ja ¢ Jw ! v
puudraeuniedaiie lslumsnaassasundulszavgirasendaunsaanany meldagiluuy
Y 3 4 9 A o o 19 [Y4 P
MInAaeId MUY MInaassnad iy gnadrunedaosaaumssinmsiaun Tsand laia
U [= d' o [Y Q' a d A 4 J 1 [1
UANANAY TR URgINHAUMI AT NAR)sEANFIge AT s znag fuLas nguYes
Y A Y 7 [sl 1 Y a9 a]
dineaveslumsiannllsdnd ladiuanaedy mnaassgniszdudeninsandininu
QNABY (precision measure) LAZAINIMWLNUE (recall measure) TAUDIAIANUNINDT9VD I

9
naaoalyay

il

Acknowledgement

I am grateful to Dhurakijpundij University for the financial support for this

research.

v

Declaration

Some of the material in this report has been previously published in the paper:

e W. Jirapanthong, "Techniques and Approaches for Developing Software Product
Line", the 2007 International Conference on Software Engineering Research and
Practice (SERP'07), Las Vegas, Nevada, USA, 2007

I grant powers of discretion to Dhurakijpandit University to allow this research to be

copied in whole or in part without further reference to me. This permission covers only

single copies made for study purposes, subject to normal conditions of

acknowledgement.

Contents

ABSTRACT
ACKNOWLEDGEMENT
DECLARATION

LIST OF FIGURES

LIST OF TABLES
CHAPTER 1
INTRODUCTION

CHAPTER 2

LITERATURE REVIEW

2.1 INTRODUCTION TO PRODUCT LINE
2.1.1 TERMINOLOGIES IN PRODUCT LINE

2.2 ACTIVITIES IN THE PROCESS OF PRODUCT LINE
SYSTEM DEVELOPMENT

2.2.1 DOMAIN ENGINEERING
2.2.2 APPLICATION ENGINEERING

23 METHODOLOGIES FOR THE DEVELOPMENT OF
PRODUCT LINE SYSTEMS

2.4 SUMMARY

CHAPTER 3

APPROACH

3.1 INTRODUCTION

3.2 REQUIREMENTS ARTEFACTS
3.2.1 USE CASE

3.22 FEATURE MODEL

3.3 DESIGN ARTEFACTS

3.3.1 CLASS DIAGRAM

3.3.2 STATE CHART DIAGRAM

III
v
VIII

14
16

28

29
29
30
30
33
38
38
40

Vi

3.3.3 SEQUENCE DIAGRAM
3.4 SUMMARY

CHAPTER 4

IMPLEMENTATION

4.1 OVERVIEW

4.2 INTERFACE

4.2.1 SELECTING SPECIFIC TYPE OF DOCUMENT
4.2.2 SPECIFYING A USE CASE

4.2.3 SPECIFYING A FEATURE MODEL

4.2.4 CONVERTING A DOCUMENT INTO XML

4.3 SUMMARY

CHAPTER 5

EVALUATION AND ANALYSIS

5.1 EVALUATION OBJECTIVES AND METHODS
5.1.1 SELECTION OF PARTICIPANTS

5.1.2 TEST CASES

5.1.3 MEASUREMENT OF TEST

5.2 EVALUATION RESULTS AND ANALYSIS

5.3 SUMMARY

CHAPTER 6

EVALUATION AND ANALYSIS
6.1 OVERALL CONCLUSIONS
6.2 THE FINDINGS

6.2.1 PROBLEMS OF THE ESTABLISHMENT AND
MAINTENANCE OF PRODUCT INE SYSTEMS

ORGANISATIONS
0.2.2 PRECISION AND RECALL MEASUREMENT
6.2.3 BENEFITS

42
44

45
45
47
47
50
52
54
54

55
55
55
57
62
63
69

70
70
71

74
74

vii

6.3 FUTURE WORK

6.4 FINAL REMARKS

BIBLIOGRAPHY
BIOGRAPHY

75
75

77
82

viii

List of Figures

FIGURE 2-1: ACTIVITIES IN SOFTWARE PRODUCT LINE
ENGINEERING ADOPTED FROM (Clements and Northrop 2004)

FIGURE 3-1: USE CASE SENDING A MESSAGE

FIGURE 3-2: DIFFERENT NOTATIONS FOR DIFFERENT TYPES
OF A FEATURE

FIGURE 3-3: THE FEATURE MODEL OF THE MOBILE PHONE

FIGURE 3-4: FEATURES IN TEXTUAL SPECIFICATION
LANGUAGE

FIGURE 3-5: AN EXTRACT OF A CLASS DIAGRAM
FIGURE 3-6: AN EXTRACT OF A STATE CHART DIAGRAM
FIGURE 3-7: AN EXTRACT OF A SEQUENCE DIAGRAM
FIGURE 4-1: THE ARCHITECTURE OF OUR TOOL

FIGURE 4-2: AN INTERFACE FOR SPECIFYING THE TYPE OF
SOFTWARE ARTEFACT TO BE CREATED

FIGURE 4-3: EXAMPLE INTERFACE DEMONSTRATING
SPECIFYING OF TYPES OF DOCUMENTS ARTEFACTS

FIGURE 4-4: AN INTERFACE FOR CREATING A USE CASE
FIGURE 4-5: EXAMPLE OF SPECIFYIGN A USE CASE

FIGURE 4-6: AN INTERFACE FOR SPECIFYING A FEATURE
MODEL

FIGURE 4-7: EXAMPLE OF SPECIFYING A FEATURE MODEL

FIGURE 4-8: AN INTERFACE TO TRANSFER A DOCUMENT
INTO XML

FIGURE 5-1: SCENARIO FOR TASK 1
FIGURE 5-2: SCENARIO FOR TASK 2
FIGURE 5-3: SCENARIO FOR TASK 3
FIGURE 5-4: SCENARIO FOR TASK 4
FIGURE 5-5: SCENARIO FOR TASK 5

33
34

37
37

40
42
44
46
48

50

51
52
53

53
54

59
60
61
61
62

X

FIGURE 5-6: PRECISION AND RECALL FIGURES OF EACH
GROUP AS WELL AS THE AVERAGE PRECISION AND RECALL
OF ALL TESTS

FIGURE 5-72 COMPARISON OF QUALITATIVE USER
EVALUATION ON CONVENTIONAL SOFTWARE
ENGINEERING APPROACHES AND OUR APPROACH FOR
SPECIFYING OF SOFTWARE PRODUCT LINE SYSTEMS

67

69

List of Tables

TABLE 3-1: PRESENTS THE CLASSIFICATION OF
RELATIONSHIPS BETWEEN FEATURES

TABLE 4- 1: ICONS IN PANEL (a)

TABLE 5-1: PARTICIPATION OF EACH GROUP FOR EACH
TASK

TABLE 5-2: SUMMARY OF REQUIREMENTS AND DESIGN
ARTEFACTS CREATED OR CHANGED IN EACH TASK BY ALL
GROUPS

TABLE 5-3: SUMMARY OF REQUIREMENTS AND DESIGN
ARTEFACTS CREATED IN TASK 1

TABLE 5-4: SUMMARY OF REQUIREMENTS AND DESIGN
ARTEFACTS CREATED IN TASK 2

TABLE 5-5: SUMMARY OF REQUIREMENTS AND DESIGN
ARTEFACTS CREATED IN TASK 3

TABLE 5-6: SUMMARY OF REQUIREMENTS AND DESIGN
ARTEFACTS CREATED IN TASK 4

TABLE 5-7: SUMMARY OF REQUIREMENTS AND DESIGN
ARTEFACTS CREATED IN TASK 5

TABLE 5-8: SUMMARY OF ARTEFACTS INVOLVED IN THE
TESTS

TABLE 5-9: PRECISION AND RECALL RATES (%)

TABLE 5-10: SUMMARY OF APPROXIMATE TIME SPENT IN
EACH TEST (HOURS)

35

49
04

04

65

65

65

65

066

66

67
68

Chapter I Introduction

In recent years we have been experiencing the proliferation of a large number of
software systems that share a common set of features and have also their own distinct
characteristics. Examples of such systems are found in the telecommunication domain in
which products including personal digital assistants (PIDAs), mobile phones, and pagers
have many common characteristics. Other examples are found in the automotives,
electronics, medical imaging, and elevator control domains. These systems are known in
the literature as product line systems (Ardis and Weiss 1997, Bass et al. 2003, CAFE 2003,
Clements and Northrop 2002, Clements and Northrop 2004, Staudenmayer and Perry
1996, Weiss and Lai 1999) and are characterized as being software systems that share a
common set of features and are developed based on the reuse of core assets and addition

of new functionalities.

According to the software product line development, the main activities are analysis,
design, and implementation of similar and different aspects of the systems:

1) Analysis — this activity is aimed to explore and justify the requirements of product
line systems which represent the common and variable aspects of the systems. In
particular, the artefacts being generated from the analysis process of software
product line systems are namely reference requirements.

2) Design — this activity is aimed to elaborate the requirements from the analysis
process and to design the software systems for the product line. More
specifically, the design presents the commonality and variability in design aspects.
The artefacts being generated from the design process of software product line
systems are namely software product line architecture.

3) Implementation — this activity is aimed to implement the requirements and
design artefacts produced from previous processes as components and to

assemble a software system which includes common and variable aspects of a

product line. In particular, the artefacts being generated from the implementation
process are a set of reusable software components and software systems of product

line.

In principle, the reference requirements, software product line architecture, and reusable
software components are gradually generated during the process of software product line
development. They are later reused for developing a software product member in an
effective and efficient way. It is meant to support the risk reduction during the software

development.

However, according to the majority of approaches being used in organisations, there are
some issues found:

1) the software product line approaches proposed recently are not flexible,
practical, and appropriate enough to the conventional approaches being used in
the organisations;

2) different organisations have various behavioral cultures and traditions depending
on the strategies and missions of the organisations. In particular, many
organisations found difficulties to adopt the software product line approaches to

fit into their strategies and missions.

Consequently, there are still errors and mistakes during the development of software
systems that requires the reuse of software components. Also, invalid use of software

product line approaches decreases the benefits of having the product line systems.

We advocate the fact that the software product line systems should be established in an
organisation, since the systems support the reuse of software components which leads
less error-prone and less time consuming. We expect to reduce the difficulties of

development activities, in particular, analysis and design.

This research is aimed to develop the meta model of software specification in order to
support the development of software product line systems. In particular, the main

contributions of our work are:

Firstly, we have investigated which artefacts are playing the main roles in the process of

product line system development and which artefacts are applied in organisations.

Secondly, we propose a model for specifying of software product line artefacts. The
model is proposed by taking into consideration:

(a) the semantics of document types;

(b) the activities during the software development process; and

(c) the available techniques and tools being used in an organisations.

Next, we have justified the model for generating the artefacts in the domain of product
line systems through five different scenarios. Each scenario presents the testing of
generating the documents that occurs during the process of product line system

development.

The remainder of this report is organized in five chapters as described below:

Chapter 2 presents a survey on product line, including the current methods and

techniques for product line system development.
Chapter 3 presents the model that represents the different types of documents and
describes the structure of each document type for specifying the commonality and

variability for product line systems.

Chapter 4 presents a prototype tool to assist an end-user to apply the model for

specification of software product line artefacts.

Chapter 5 contains a description of the experiments that we have developed to

demonstrate the work and evaluates the experimental results of our work.

Chapter 6 discusses the conclusions and directions for future work.

Chapter II Literature Review

This chapter describes a literature of software product line including current problems,
and existing approaches, techniques and tools in the domain of product line systems. The
motivation and related terminologies are given in Section 2.1. In Section 2.2 presents the
activities during software product line. Also, Section 2.3 illustrates existing

methodologies proposed for software product line development.

2.1. Introduction to Product Line

Software reuse is the process of software development by using existing software artefacts
(Department_of Defense 1996). Over the last years, approaches and techniques for
software reuse have been developed and extended. According to (Clements and
Northrop 2002, ESAPS, Weiss and ILai 1999), software reuse at the largest level of
granularity is supported by product line. This is to serve the reuse practice in an
organization having a large number of products, which drives issues such as highly
expensive, complex, and tedious tasks. The different exact definition of product line will

be given in Section 2.1.1.

The idea of product line was motivated by the need to systematize a number of products
more effectively and the fact that these products have a certain set of common and
special functionalities. For example, a mobile-phone company has created a mobile-
phone product line that contains a set of mobile-phones. Some lower-end mobile-phones
have similar basic functionalities but different hardware capacities to offer competitive
price. Mobile-phone network communications in some countries provide different
standards of transmission and signaling and depend on regional diversity; thereby, a

company provides different support for different regions.

2.1.1. Terminologies in Product Line

We describe below terminologies used in the domain of product line.

Product Line
Initially, Parnas (Parnas 1976) defined program family as a set of software programs
constituted as a family whereby a program is developed by applying common properties

of prior programs and adding extra properties to the program.

In (Bass et al. 2003, CAFE 2003, Clements and Northrop 2004, Staudenmayer and Perry
1996, Weiss and Lai 1999), product family is defined as a set of products sharing some
common aspects and having some different aspects. The product family is aimed at
gaining the market share under the same business domain and marketing factors. They
also suggested product members that are products which are built-up by applying shared
assets l.e. requirements, architecture, models, and source code in a product family.
Eventually, product line and business unit are other terms found in the literature that have
the same meaning as that of product family (Ardis and Weiss 1997, Bass et al. 2003,
Clements and Northrop 2004).

According to (Bass et al. 2003, CAFE 2003, Clements and Northrop 2002, Staudenmayer
and Perry 1996), product family takes into account both hardware and software systems.
In (Clements and Northrop 2002), they suggested that a software product line is a set of
software-intensive systems sharing a common, managed set of features that satisfy the
specific needs of a particular market segment or mission and is developed from a

common set of core assets in a prescribed way.

In this work, we focus on and call the software systems that are developed for product

line as product line systems.

Features
The term feature has been initially used in (Kang et al. 1990). The authors defined a

feature as a prominent and distinctive aspect or characteristic of a system that is visible to

various stakeholders (e.g. end-users, domain experts, developers). In (Bosch 2000,
Gibson et al. 1997, Griss 2000, Svahnberg et al. 2001), a feature is concerned with a
logical behavior of a system that is specified as a requirement or set of requirements (i.c.
functional and non-functional requirements). In (Bailin 1990), the author suggested a
different definition whereby a feature refers to any distinctive or unusual aspect of a
system that requires a decision for system engineering. In this work, we use the term
feature as a user-visible aspect or as a characteristic of product line systems. A feature is
related to other features and represented in a tree structure of And/Or nodes to express

common and variable aspects within product line systems

Core Assets

Core assets (Clements and Northrop 2004) are those assets that form the basis for a
product line. Core assets include requirements, architecture, and reusable software
components, domain models, documentation and specifications, schedules, test cases,
and work plans. In (Riebisch et al. 2002), the authors also suggested that core assets i.e.
requirements, architectures, analysis models, design models, test cases, and source codes
are reused between different product members in product line. A variant term of core

asset is platform that is defined in the domain of Model-Driven Architecture (MDA).

Commonality Vs. Variability

According to (Bosch 1998, Clements and Northrop 2004, Weiss and Lai 1999),
commonality is concerned with a set of similar functionalities or aspects between product
members of product line and variability is defined as different functionalities or aspects

between product members of product line.

2.2. Activities in the Process of Product Line System Development

According to the maturity level of an organization, the approaches for the development
of product line can be categorised, namely proactive, reactive, and extractive. We describe

below three types of approaches for the product line system development.

Proactive

The proactive approach (Krueger 2001) is an approach of the product line system
development when an organization decides to analyse, design, and implement a line of
products prior to the creation of individual product members. The product line is built-
up and the core assets representing the commonality and variability are created. All
product members are then created under the scope of the product line. The approach is
viewed as a top-down developing strategy which requires the setting of broad goals and

the goals are refined in later phases of the development.

Reactive

The reactive approach (Krueger 2001) is an approach of the product line system
development when an organization enlarges the product line systems in an incremental
way based on the demand for new product members or new requirements for existing
products. The core assets need to be extended and evolved in such a way as to
correspond to new requirements or new systems. This is caused by the fact that the
customer requirements considerably influence the architecture and the design of
products. On the other hand, a company that sticks strictly to the principles of made-to-
order manufacturing will not allow an uncontrolled proliferation of variety due to the
demands of individual customers. However, in reality, many companies have a
production control concept based on customer requirements. So the problem occurs
when the architecture and design of product line systems should be maintained. This
level of development takes shorter time than the previous one since system developers

only extend and adapt the available products.

Extractive

The extractive approach (Krueger 2001) is an approach of the product line system
development when an organisation creates product line systems based on existing
product members by identifying and using common and variable aspects of these
products. The stakeholders i.e. domain experts and system developers analyse and define
the product line by taking into consideration individual products’ requirements. The
approach is viewed as a bottom-up developing strategy that begins with existing artefacts
e.g. requirements specification, design and source code, then creates the higher

granularity level of each artefact as the core assets.

In the following section, we describe the activities occurred during the product line
system development process. In addition to (Bosch 2000, Clements and Northrop 2002,
Jazayeri et al. 2000, Thiel and Hein 2002), software product line engineering is a methodology
for developing product line systems that focuses on activities of analysis, design, and
implementation of product line as well as the use of the core assets inclusive common

and variable artefacts potentially and effectively for product members.

Figure 2-1 illustrates the main activities of software product line engineering i.e. domain

engineering and application engineering.

Product Family’s

Domain

Feedback
Domain Engineering
v v
N Domain »| Domain Design > Domain
Analysis g Implementation
N R |
v

Product Members®
Requirements N Requirements
Engineering

Reference
Requirements

Software Product
Line Architecture

Reusable Soltware
Components

v

v

Application Engineering

>

Design Analysis

v

Integration and

Testing

[Product Members

Figure 2- 1: Activities in software product line engineering adopted from (Clements and
Northrop 2004)

2.2.1. Domain Engineering

Domain engineering is a systematic process for the creation of the core assets (Clements and

Northrop 2004). There are three steps for domain engineering:

Domain Analysis

Domain Analysis is the process of identifying, collecting, organizing and

representing the relevant information in a domain, based upon the study of

existing systems and their developing histories, knowledge captured from

domain experts, underlying theory, and emerging technology within a

domain (Kang et al. 1990).

10

As shown in Figure 2-1, software artefacts that are produced during the activity of
domain analysis are called reference requirements. The reference requirements define the
products and their requirements in product line. The reference requirements contain
commonality and variability of the product line. The following sub-activities occur during

the domain analysis:

I. Scoping

According to (Arango and Prieto-Diaz 1991, Ardis and Weiss 1997), domain analysis for
product line basically starts from scoping. Scoping is to identify the context of product
members in product line e.g. functionalities and performances. The activity is concerned
with domain knowledge obtained from domain experts and other sources such as books,
user manuals, and design documents (Nuseibeh and Easterbrook 2000). The domain
experts analyse and define the boundary of the product line and the standard

terminologies in the product line. The product members are therefore defined.

II. Commonality and Variability

The activity of defining commonality and variability is to thoroughly discover and define
commonality and variability in product line (Ardis and Weiss 1997, Weiss 1995). Many
existing approaches are proposed to support the activity. Examples of such approaches
are (Ardis and Weiss 1997, Bosch 2000, Clements and Northrop 2002, Svahnberg and
Bosch 2000, Weiss 1995). The determination of whether a characteristic is a

commonality or variability mostly depends on a strategic decision of organisations.

In particular, defining commonality is the determination of whether a requirement is
served as the commonality of product line. Defining variability is the determination of
whether a requirement is served as the variability of product line. Variability is
represented as a set of variation points. Bach variation point is a situation that product
members can be specialized differently and dependent on a number of variants. Variants
are possible variables for each variation point. A variation point is classified as: (i) optional
— an aspect may exist in a product; (ii) a/fernative — an aspect can be specialized as one of

the variants; and (iii) optional alternative — an aspect can be specialized as one of the

11

variants or does not exist (Svahnberg et al. 2001). Variation points can appear at different
phases of product line system development i.e. analysis, design, and implementation. At
the state of domain analysis, a variability point is concerned with the highest abstraction

level of an artefact.

ITI. Planning for Product Members and Features

According to (Arango and Prieto-Diaz 1991), one of the activities in domain analysis is
to identify features of product members in product line. The features of a product line
are planned for possible product members. In other words, the relevant requirements of
product members are associated to the features of product line. The common and

variable aspects of product line are accommodated and planned for product members.

Domain Design

Domain design is the process of developing a design model from the products
of domain analysis and the knowledge gained from the study of software
requirements or design reuse and generic architectures (Garlan and Shaw

1993).

Software artefacts that are produced during the activity of domain design are called
software product line architecture (see Figure 2-1). In (Bass et al. 2003, Jazayeri et al. 2000),
software architecture forms the backbone of integrating software systems and consists of a
set of decisions and interfaces which connect software components together. Software
product line architecture differs from an architecture of single systems that it must
represent the common design for all product members and variable design for specific
product members (Linden et al. 2004). The following sub-activities occur during the

domain design:

I. Software Product Line Architecture Definition

The activity of software product line architecture definition is to design the software

architecture that describes commonality and variability of product members. The

12

software product line architecture is composed of a set of architectural decisions, a set of

reusable design artefacts, and a set of optional design artefacts.

The variability in software product line architecture is called designed variability points
(Svahnberg et al. 2001). The software product line architecture can be elaborated into
different levels of granularity. At higher levels, the software product line architecture
does not entail shared artefacts between product members while at the low levels, the
software product line architecture make a distinction between specific designs of product

members.

I1. Software Product Line Architecture Evaluation

The activity of software product line architecture evaluation is to evaluate the software
architecture that describes commonality and variability of product members. The
evaluation of software product line architecture is to assure that the architecture has the

right properties and characteristics of product line.

For the evaluation of software product line architecture, the following must be
considered: (i) the context for software product line architecture must be scoped and
planned during domain analysis; (if) the commonality of product line must be elaborated
in several levels of the architecture; and (iii) the variability of product line must be
identified and provided with a set of variants for each designed variability point in the

software product line architecture.

However, Bosch (Bosch 2000) suggested that the maturity of software product line
architecture can be viewed as three levels: (i) an under-specified architecture that defines
common aspects but does not specify differences between product members; (ii) a
specified architecture that defines both common and variable aspects for product
members; however, does not define possible variables for variable aspects; and (iii) an
enforced architecture that defines both common and variable aspects covering possible

variables for all product members.

13

Many approaches and techniques are proposed to support domain design for product
line. Relevant existing methodologies e.g. model-based software engineering (MBSE 1993),
organizational domain modeling (ODM) (Simos 1995), synthesis (Campbell et al. 1990), domain-
specific software architecture (DSSA) program (Tracz et al. 1993), evolutionary domain life-cycle
(EDLC) (Gomaa et al. 1989) are applied for the development of software product line
architecture. Some general-purpose techniques such as data flow diagrams, structured
analysis and design techniques, entity relationship modeling (ERM), object models (e.g.
UML (UML), view point-oriented models (Finkelstein et al. 1990) can be also applied
for the activity. Recently a number of methodologies such as (Atkinson et al. 2000,
Batory et al. 2000, Bayer et al. 1999, Griss et al. 1998, Kang et al. 1998, QADA, Simos
1995, Weiss 1995, Weiss and Lai 1999) are proposed to particularly support the activity

of domain design in the domain of product line.

Domain Implementation

Domain implementation is the process of identifying reusable components
based on the domain model and generic architecture (Clements and

Northrop 2004).

Software artefacts that are produced during the activity of domain implementation are
called reusable software components (see Figure 2-1). The activity is focused on the creation of
reusable software components e.g. source codes and linking libraries that are later
assembled for product members. In (Szyperski 1997), a reusable software component is a
unit of composition with interfaces and independent context. The reusable software
component is created and then integrated with other reusable software components for a
particular product member. The set of reusable components are defined independently
and provide the connectors for integration with other components to fit into a specific
functionality. The components are viewed as black boxes whose data and
implementation details are completely hidden and only interfaces are allowed. The
development of components can be applied with relevant existing methods such as

object-oriented methods e.g. (Bosch 2000, Szyperski 1997).

14

At the end of the domain engineering process, an organization is ready for developing
product members. In the following section, we describe the activities for developing the

product members in the software product line engineering.

2.2.2. Application Engineering

As shown in Figure 2-1, application engineering is another major activity of software
product line engineering. According to (Northrop 2002), application engineering is a
systematic process for the creation of a product member from the core assets created
during the domain engineering. Domain engineering assures that the activities of analysis,
design and implementation of product line are thoroughly performed for all product
members, while application engineering assures the reuse of the core assets of the

product line for the creation of product members.

The application engineering process for product line is comparably considered with the
process for a single system (Clements and Northrop 2004). There are activities such as:
(i) requirements engineering, which is a process that consists of requirements elicitation,
analysis, specification, verification, and management (Fairley and Thayer 1997,
Sommerville and Sawyer 1997, Sutcliffe and Maiden 1998); (ii) design analysis, which is a
process that is concerned with how the system functionality is to be provided by the
different components of the system (Sommerville 2000); and (iii) ntegration and testing,
which is a process of taking reusable components then putting them together to build a

complete system, and of testing if the system is working appropriately.

Requirements Engineering

The activity of requirements engineering focuses on identifying, colleting, organizing and
representing requirements of a product member. The major difference between
requirements engineering of an individual product and a product member is that

stakeholders not only focus on the specific product but also on the scope of product line.

15

Technically, the requirements of product members are defined and scoped under the
domain of the product line’s requirements. A variability point of a requirement is bound

with a variant for a particular product member during requirements engineering.

Design Analysis

Design analysis in application engineering must be consistent with the concept of design
analysis in domain engineering. This activity is to analyse and design the architecture for
a product member. Software product line architecture is refined and specialized for a
particular product member. The software architecture of the product line is configured to
fit for a product member based on the specific product’s requirements. The
configuration includes the addition and removal of designed variability points of the

product line.

In (Bosch 2000), architecture pruning is an activity that the common aspects of software
product line architecture is collected and the variable aspects for a specific product
member are specified. The composition of common and variable aspects acquires the
software architecture for a specific product member. Nonetheless, it is possible that a
software product line architecture does not fulfill the complete design of a specific
product. This needs an activity called architecture extension (Bosch 2000). The activity

extends some aspects that are not included in the software product line architecture.

Integration and Testing

The usage of the core assets of product line and development of product members
involve the following three steps: (i) discovering a set of reusable components for a
specific product member; (i) instantiating the wvariability points of the reusable
components for a specific product member; and (iii) integrating and testing the reusable

components for the product member.

16

2.3. Methodologies for the Development of Product Line Systems

In this section, we describe existing methodologies to support product line system
development. In particular, object-oriented methodologies have been common and
popular in the development of software systems. Many existing object-oriented methods
are aimed at supporting the development of single software systems. Recently, some
object-oriented methods have been extended and proposed for the development of
product line systems. We describe below the methods and approaches for product line

system development in the object-oriented paradigm.

COPA

Component-Oriented Platforns Method (COPA) (America et al. 2000) is proposed for product
families of software-intensive electronic products i.e. telecommunication, medical
imaging, and consumer electronics. COPA defined arvhitectural and process frameworks. The
architectural framework consists of five views:
(i) Customer view — the view shows customer business models represented in
customers language or textual language.
(i) Application view — the view shows application models represented in UML
diagrams
(itl) Functional view — the view shows functionalities and performances of systems
represented in use cases
(iv) Conceptual view — the view presents platform and product-specific components created
for product line and product member, respectively. In COPA, construction
components are applied with some component-based techniques such as COTS,
Microsoft’s COM component model, Sun’s JavaBeans, and OMG’s CORBA.
(v) Realization view — the view illustrates specific techniques e.g. hardware
infrastructure, hardware platform, operating systems. These are specified in a textual

language.

The process framework consists of three main activities:
() Product family engineering — this activity is driven by policy and plans of an

organisation. There are sub-activities during product family engineering such as

17

domain modeling, requirements formulation, and commercial and technical design.
These activities construct customer, application, and functional views. The
architecture of product line is created during product family engineering. For
example, COPA applied Koala for representing the product family architecture.
According to Figure 2-1, this activity can be comparable with the domain analysis
and domain design during domain engineering.

(i) Platform engineering — this activity is concerned with technology and people
management. Sub-activities can occur during platform engineering such as standard
development, cooperating between stakeholders in product family engineering and
product engineering to comprehend requirements of product line and product
members, integrating and testing for product members, and maintenance of existing
reusable components and platforms. This activity has sub-activities that are
comparable with domain engineering including domain analysis, domain design, and
domain implementation as shown in Figure 2-1.

(iti) Product engineering — this activity is concerned with the customer-oriented process.
There are sub-activities during product engineering such as standard development,
cooperating with customers to understand specific requirements, constructions of
product members, and maintenance and support for product members. According to
Figure 2-1, this activity can compare with application engineering including

requirements engineering, design analysis, and integration and testing.

In the COPA method, the authors suggested the activities in software product line
engineering and artefacts created during three activities. The artefacts are represented in
UML diagrams, use cases, textual language, Koala language (Ommering et al. 2000), and

component-based representation languages.

QADA
Quality-driven Development of Software Family Architectures QADA (QADA) is a quality-driven
architecture-centric method for product line system development. The QADA method

described the development of software product line architecture. The method includes

five activities:

18

(i) Requirements engineering — this activity is aimed to capture and analyse requirements
and context model. The requirements i.e. functional and non-functional requirements
and context model i.e. hardware and software interfaces of a system, a set of
constraints, rules, and standards are represented in textual language.

(1) Conceptual architecture design — this activity is aimed to identify a conceptual
architecture which is represented with three views namely, s#uctural view, bebavior view,
and deployment view. The structural view is concerned with conceptual components
and their relationships. The structural view is composed of three types of artefacts:
(a) list of functional responsibilities represented in textual language; (b) table of non-
functional requirements represented in text and table; and (c) decomposition model.
The behavior view is concerned with dynamic actions and kinds of actions to which
a system produces. The behavior is represented in a collaboration model. The
deployment view is concerned with allocation of the conceptual components into
hardware components. The behavior is composed of two types of artefacts: (a) table
of deployment units represented in text and table; and (b) allocation model. Another
type of artefact generated during conceptual architecture design is design rationale
which represents design principles and rules.

(i) Conceptual architecture analysis — this activity focuses on qualities, commonality, and
variability of a system. Three types of artefacts are created namely: (a) product line scope,
which represents a boundary of product line; (b) faxonomy of requirements, which
describe syntactic architectural notations and are represented in domain models,
relevant architectural views; architectural styles; environmental assumptions and
constraints; and trade-off rationale; and (c) &nowledge base, which allows the evaluation
of collections of architectural styles and patterns in terms of both quality factors and
concerns. The knowledge base in QADA contains materials, quality attributes,
questions that describe the evaluation of artefacts.

(iv) Concrete architecture design — this activity focuses on providing a set of concrete
software components and definition of interfaces between components. The activity
is concerned with three views in the activity of concrete architecture design
(structural view, behavior view, and deployment view). Firstly, the list of functional,
non-functional requirements, and decomposition model from the conceptual

architecture is designed and refined as structural diagrams that represent concrete

19

components, interfaces and relationship. Secondly, the collaborative model from the
conceptual architecture is defined and refined as state diagrams and wmessage sequence
charts. 'Thirdly, the table of deployment units and allocation model from the
conceptual architecture are designed and refined as deployment model.

(v) Concrete architecture analysis — this activity is aimed to assess and evaluate the
software product line architecture regarding expected changes. The analysis method
consists of five sub-activities: (a) deriving of changes from the product line scope; (b)
defining product-line architecture description; (c) defining scenario identification; (d)

evaluating the effect of scenarios; and (e) identifying scenario interaction.

In the QADA method, the activities of domain engineering are defined. More
specifically, the activity of requirements engineering is comparable with domain analysis
in Figure 2-1, and the activities of conceptual architecture design, conceptual architecture
analysis, concrete architecture design, and concrete architecture analysis are comparable
with domain design in Figure 2-1. However, the QADA method does not cover an
activity of application engineering in Figure 2-1. In addition, artefacts created during

theses activities are represented by using textual language and UML diagrams.

KobrA

KobrA (Atkinson et al. 2000) is a component-based method for software product-line
engineering that is developed by Fraunhofer IESE. In the KobrA method, the authors
proposed a Komponent as a set of reusable components that satisfy a requirement or group
of requirements. The Kobra method is divided in two main activities: (i) framework
engineering, which defines a set of Komponents; and (ii) application engineering, which applies

existing Komponents and constructs a product member.

Framework engineering consists of four activities, namely:
(i) Context realization — the aim of this activity is to define properties and scope of
product line. The business process models, which describe the requirements and
constrains of product line, and decision models, which describe common and variable

requirements of product line, are created.

20

(i) Komponent specification — the aim of the activity is to describe properties of a
Komponent. The structural model, which is represented in UML class diagrams,
bebavioural model, which is represented in UML statechart diagrams, functional model,
which is represented in Operation schemas, and decision model, which is represented in
a textual language, are created.

(iti) Komponent realisation — the aim of the activity is to define the design of a
Komponent. The nteraction model, which is represented in UML collaboration
diagrams, structural model, which is represented in UML class diagrams, activity model,
which is represented in UML activity diagrams, and decision model, which 1is
represented in a textual language, are created.

(iv) Component reuse — this activity focuses on applying existing components to develop

new Komponent.

Application engineering consists of two activities:
(i) Context realization instantiation — the activity is aimed to identify relevant
Komponents to be reused for a product member.
(i) Framework instantiation — the activity is used to create a framework of a set of

Komponents and relationships between those Komponents for a product member.

The Kobra method is defined to complete the activities in the development of product
line systems. More specifically, the activities of context realization, Komponent
specification, Komponent realization, and component reuse are comparable with the
activities of domain analysis, domain design, and domain implementation as shown in
Figure 2-1, respectively. Moreover, the activities of context realization instantiation, and
framework instantiation cover the activities of application engineering including
requirements engineering, design analysis, and integration and testing in Figure 2-1.
Additionally, the method is systematic, scalable and practical for the development of
product line systems. The artefacts created in the method are based on UML diagrams
and textual language that are customised to fulfil the activities in the domain of product

line systems.

21

PuLSE

Product Line Software Engineering (Pul.SE) (Bayer et al. 1999) is a customizable software
product line engineering approach. The PuLSE method consists of four main activities:
() Initialisation — the activity is aimed to analyse and evaluate a situation of an
organisation.
(i) Infrastructure construction — the aim of this activity is to define a scope and processes
of product line. A scope model and definitions of product line are created.
(iti) Infrastructure usage — the aim of activity is to define and create product members.

(iv) Evolution and management — the aim of activity is to evolve the product line.

The PuLSE method consists of six technical components and three support
components. The technical components are: (1) PuLSE-BC, which is used to support the
analysis and evaluation of an organisation in the initialisation activity; (ii) PuLSE-Eco,
which is used to support an economic analysis of product line; (iii) PuLSE-CDA, which
is used to support a domain analysis of product line; (iv) PuLSE-DSSA, which is used to
support a domain design of product line; (v) PuLSE-I, which is used to support the
development of product member; and (vi) PuLSE-EM, which is used to support the

evolution and management of product line.

The support components are: (i) project entry points, which are used to support analysis of
an ofganisation’ situation; (i) waturity scale, which are used to support evaluation the
adoption of product line; and (iif) organization issues, which are used to support

maintenance of product line.

Pul.SE defined the framework of components conducted by different activities. The
activity of initialization is comparable with domain analysis in Figure 2-1. The activity of
infrastructure construction has sub-activities in common with domain analysis, domain
design, and domain implementation. Moreover, the activity of infrastructure usage is
comparable with application engineering including requirements engineering, design

analysis, and integration and testing as shown in Figure 2-1. In addition, software product

22

line architecture and other artefacts in product line are represented as a set of prescribed

components.

FAST

Family-oriented Abstraction, Specification and Translation (FAST) (Weiss 1995) is a software
product line method that initially described two main activities in software product line
engineering. The activities, which resemble the main activities depicted in Figure 2-1, are:
() Domain engineering, which defines product line and the core assets of the product
line; and
(i) Application engineering, which develops product members by using the core assets

of the product line.

FAST describes a domain specific language AML (Application Modeling Language) for
specifying the requirements of product line. The requirements of product line
represented in the language are then specialized for product members. However, the

definition and specification of requirements are restricted.

RSEB

Reuse-Driven Software Engineering Business (RSEB) (Jacobson et al. 1997) is proposed
to focus on achievement of business goals and improvement of business performance. In
(Jacobson et al. 1997), they proposed to apply use cases to describe reference
requirements of product line and UML diagrams to describe the software product line
architecture. They also defined activities in the development of product line systems:

(i) Requirements engineering, where variability is specified as use cases;

(1) Architectural family engineering, where the software product line architecture is

created in UML diagrams;

(iil) Component system engineering, where reusable components are developed; and

(iv) Application system engineering, in which product members are developed.

The activities defined in RSEB are comparable with ones shown in Figure 2-1. More

specifically, the activity of requirements engineering in RSEB is concerned about domain

23

analysis and requirement engineering defined in (Clements and Northrop 2004). The
activities of architectural family engineering, and component system engineering have
likewise sub-activities in domain design and domain implementation, respectively.
Moreover, the activity of application engineering in RSEB covers the activities of design

analysis, and integration and testing as shown in Figure 2-1.

SPLIT

Software Product-Line Integrated Technology (SPLIT) (Coriat et al. 2000) is a systemic approach
for the development of product line systems. SPLIT suggested a life-cycle of the
development process which consists of two activities. The activities, which resemble the
main activities depicted in Figure 2-1, are:
(i) Domain engineering, which reference requirements, software product line
architecture, and reusable components are created; and

(i) Application engineering, which product members are developed.

There are four approaches applied in SPLIT:
(i) The approach called SPLIT/Cloud is applied to develop the reference
requirements of product line systems. In this activity there are artefacts created:
business process, capability, functional area, force, functional requirement, and non-
functional requirement. In SPLIT, they described two situations of requirements
engineering: the first one is the development based on existing products; and the
second one is the development from scratch. The product line system development
based on existing products consists of activities: (i) define reference requirements i.e.
functional and non-functional; (ii) identify and organize the requirements of each
product member; (iii) define artefacts that represent high-level views of functional
requirements of each product member; (iv) define artefacts that represent high-level
views of non-functional requirements of each product member; (v) map high-level

views of functional and non-functional requirements to the reference requirements

The product line system development from scratch consists of activities: (i) define

the domain of product line; (ii) scope the domain; (iii) identify the requirements of

24

the product line; (iv) determine COTS used in the product line domain by applying
with COTS model; (v) define reference requirements ie. functional and non-
functional; (vi) define a business process; (vii) define capabilities related to each

business process; and (viii) define forces related to each non-functional aspect.

(if) The approach called Daisy is applied for developing software product line
architecture. In Daisy, a software system product line architecture (SSPLA)
description is based on three architectural views: (a) business view; (b) subsystem
view; and (c) technology view. The business view represents subject area and analysis
pattern. The subsystem view represents subsystem, architectural pattern, process,
architectural guidelines, architectural constraints and information. The technology
view represents component model, computing infrastructure and deployment. The

views are represented in UML diagrams.

(iii) The approach Ladder is applied for developing reusable components. In Ladder,
they suggested the transformations, composition, splitting up, abstraction,
refinement, development branch for reusable components development as well as

COTS adaptation.

(iv) The approach Wheels is applied for supporting sub-processes during domain

engineering and application engineering in SPLIT.

The SPLIT method is applied in ESAPS (ESAPS) and CAFE (CAFE 2003) projects. The
method itself is composed of other methods to support each activity in software product
line engineering. Otherwise, artefacts produced by using these methods are represented

in 1.e. UML diagrams, use cases, component-based representation languages.

Additionally, the concept of feature-orientation is not completely new in software
engineering and there have been efforts to apply the concept of features to express
aspects of a software system. Examples of feature-oriented methods are FODA (Kang et

al. 1990), FORM (Kang et al. 1998), and FeatuRSEB (Griss et al. 1998), which are

increasingly important to software product line engineering due to several reasons:

25

(i) The fact is when developing the product line, stakeholders communicate with
cach other in terms of product features. It becomes an effective media of
communication between customers and system developers.

(i) Due to a large size and diversion of requirements for product line systems,
specifying and representing the requirements becomes primary tasks in domain
analysis as these activities are supported by the feature-oriented methodologies.

(iii) Features can be used as the basis for analyzing and representing commonalities
and variabilities of product members under the same product line. Additionally, the

feature-oriented methodologies offer a way to classify various requirements.

FODA

Feature-Oriented Domain Analysis FODA) (Kang et al. 1990) is proposed to support the
activity of domain analysis. In FODA, the activities are described and cover the activity
of domain analysis depicted in Figure 2-1. Three activities are:
(i) Domain analysis, which focuses on scoping of product line and identifying product
members;
(1) Feature analysis, which develops a list of common and variable aspects of product
line; and

(ii) Feature modelling, which models the common and variable aspects as @ feature model.

FODA is an initial method that defines a feature model for representing common and
variable aspects of product line. Identification of features requires domain knowledge
obtained from the domain experts and other sources such as books, user manuals, design
documents, etc. In FODA, the authors described that domain experts and system
analysts can use standard terminologies to communicate with each other in mature and
stable domains. Therefore, analyzing the domain terminology is an effective and efficient
way to identify the features of a given domain. However, in prior to feature
identification, standard terminologies and domain scope should be done since they are
not available in immature or emergent domains. Feature models are used as a mechanism
to facilitate different perceptions of domain concepts and scope which cause confusion

between stakeholders.

26

The authors defined three types of features: (i) mandatory features, which represent the
commonality of product line; (ii) alternative features, which are specialized for product
members; and (iii) optional features, which may or may not exist in product members. The
feature model consists of elements such as: (a) a free-structured diagram which represents
characteristics of product line; (b) a definition for each feature; and (c) composition rules
which are defined rationally between features. There are two types of rules: (i) one

feature requires another feature: and (ii) one feature is zzc/uded in another feature.

FORM

Feature-Oriented Reuse Method (FORM) is an extension of FODA that provides the

activities of domain analysis and the development of core assets. Three activities are

concerned:
(i) Feature modelling — that is a process for defining features of product line systems.
The authors proposed to apply the extension of the feature model from FODA for
representing features. They proposed the classification of with respect features to
their purpose as: (a) a set of cpability features that express the characteristics of
distinct services, operations, functions, or performances, (b) a set of operating
environment features that represent attributes of the environment in which an
application is used and operated, (c) a set of domain technology features that represent
the domain of realization (e.g., navigation methods in the aviation domain), and (d) a
set of implementation technigue features that represent implementation details at lower
and more technical levels e.g. abstract data types and sorting algorithms. Kang et al.
pointed out that a domain technology feature is more specific to a given domain and
may not be usable in other domains while an implementation technique feature is
more generic and may be used in other domains.
(1) Architecture modelling — that is a process for defining software product line
architectures. Artefacts created during this process are viewed a hierarchy and
consists subsystem model, process model and module model. These models are represented

the commonality and variability of the product line.

27

(iii) Component engineering — that is a process for defining reusable components. In (Lee
et al. 2000), the authors described the technique used in the activity of component
engineering in the FORM method. The authors described principles for the creation
of reusable components by mapping features created during the activity of feature
modeling. The principles are (a) capability features can be modeled as an object or
group of objects that provide a similar set of operations. The object or group of
objects is specified with a parameter for a particular product member; (b) operating
environment features can be modeled as an object or group of objects that provide a
set of operations for different requirements of product members; (c) domain
technology features are modeled to be specific for the domain of product line; and
(d) implementation technique features should be used to implement domain-specific
objects. For example, a communication method feature (e.g. synchronized or
asynchronized communication) depends on the implementation languages or
platforms. However, the mapping of the feature model and product member is not

described.

In the FORM method, the activities of domain engineering are defined. More
specifically, the activities of feature modeling, architecture modeling, and component
engineering have likewise sub-activities in domain analysis, domain design, and domain
implementation defined in (Clements and Northrop 2004). However, the FORM method

does not cover an activity of application engineering.

FeatuRSEB

Featuring RSEB (FeatuRSEB) (Griss et al. 1998) is a combination of RSEB method
(Campbell et al. 1990) and FODA (Kang et al. 1990). The FeatuRSEB method includes
the activities defined in RSEB which are requirements engineering, architectural family
engineering, component system engineering, and application engineering. The method
adapted using a feature model by adding UML-based relationships i.e. dependency and
refinement. The feature model is used to represent common and variable RSEB models.
In other words, the feature model is used to represent an association between RSEB

models in product line.

28

2.4. Summary

This chapter has provided background information for product line systems. It has
presented the terminologies, existing problems, current approaches and current
techniques in the domain of product line. In the next chapter, we present a model for

software product line specification.

Chapter III Software Artefact Specification for
Product Line Systems

This chapter describes an approach to software artefact specification for supporting
product line systems. The approach includes the types of documents represented
software artefacts created during the phase of domain analysis and domain design
(according to Figure 2-1) are defined in Section 3.2 and Section 3.3 respectively. The
summary of the approach is also given in Section 3.4. Section 3.5 summarises of the

chapter.

3.1. Introduction

According to the literature and survey of techniques which are applied by organizations
in Thailand, we present the approach to software artefact specification for product line
systems that is suitable to software development. Our work concentrates on documents

generated during the phases of domain analysis and domain design.

Particularly, the approach includes two main essentials: (i). the types of documents
represented software artefacts created during the phase of domain analysis; and (i) the
types of documents represented software artefacts created during the phase of domain

design.

Additionally, we believe that a feature-based object-oriented engineering approach is
required when developing product line systems. A feature-based approach is important
to support domain analysis and domain design, enhance communication between
customers and developers in terms of product features, and assist with the development
of software product line architecture. On the other hand, an object-oriented approach is

necessary to assist with the development of the various product members. As the

30

following section, we elaborate the idea of applying featured-based objected-oriented

engineering approach. We describe each type of software artefacts.

3.2. Requirements Artefacts

The reference requirements created during the domain analysis phase is represented by
feature model (Kang et al. 1998) and use case (Cockburn 1997). In the following, we

described the details.

3.2.1. Use Case

Use case is a textual specification language that captures a contract between the
stakeholders of a system about its behavior (Cockburn 1997). Examples of the
approaches proposed to apply use cases in the activities of product line system
development are (America et al. 2000, Griss et al. 1998, Jacobson et al. 1997). In our
work, we represent the functional requirements of product line as use-cases by adapted
the template proposed in (Fantechi et al. 2004). The authors proposed to express the
requirements of product line systems by extending the use case definition given by
Cockburn (Cockburn 2000). In particular, the variability is expressed in use cases by
using special tags. The tags indicate the variable requirements of product line that need
to be specialized for a product member. They proposed three types of tags:
(i) alternative tag, which represents variable requirements with a predefined set of
requirement variants;
(i) parametric tag, which represents variable requirements that requires the instantiation
of specific parameters for a product member, and
(i) optional tag, which represents variable requirements which may or may not be

instantiated for a product member.

In our template, a use case is composed of:
(1) Use_Case — the element consists of three attributes, which are information of the
use case:

(a) Use_Case_ID — this attribute is identified as a use case;

31

(b) System — this attribute specifies which domain of product line is; and
(c) Product_Member — this attribute specifies for which product member the use

case is specified.

(2) Existential — this element is used to represent the existential of a use case. It
consists of an attribute Commonality_1 ariability — this attribute can be (i) mandatory,
which indicates a use case must be satisfied by product members; (ii) a/lfernative, which
indicates a use case must be satisfied and altered for particular product members; and
(ii) optional, which indicates a use case may or may not be satisfied by a product
member.

Moreover, in the case that the attribute Commonality_1 ariability is specified as
“alternative”, the element Existential can consist of sub-element Variant_Point. The
element Variant_Point specifies a particular point of the use case’s variability. The
element Variant Point can consist of a sub-element either Variant or Parameter. The
element [ariant specifies a set of alternatives for the particular variant point, as the
element Parameter specifies the domain of the Variant_Point. Note that in the case that
the attribute Commonality_Varability is either mandatory or optional, the element

Variant_Point may not exist.

(3) Title — the element Tzt is the title of use case.

(4) Description — the element Description is specified for a brief textual description.

(5) Level — the element describes the level of functionality that it describes within a
system.

(6) Preconditions — the element describes the conditions that must be satisfied before
its execution.

(7) Postconditions — the elements describes the conditions that must be satisfied after
its execution.

(8) Primary_actors — the element specifies primary users of the use case.

(9) Secondary_actors — the element specifies secondary users of the use case.

(10) Flow_of_events — the element specifies a list of the events that trigger the use case

and the specification of the normal events that occur within it. The element

32

Flow_of events consists of the sub-element Event, which specifies a particular event
being preceded in the use case.

(11) Exceptional events — the element describes the events that do not always occur
when the use case is executed.

(12) Superordinate use case — the element specifies a use case for which the use case
is elaborated.

(13) Subordinate use cases — the element specifies a use case to which the use case is

specified.

Figure 3-1 illustrates an example of a use case Sending a Message from a mobile phone for
product member PM1 of the mobile phone case study. The use case is identified with
UseCaselD (“UC1”), System (“MobilePhone”), and Product_Member (“PM17). The use case
contains Existential element which its attribute Commonality 1 ariability is specified as
“Alternative”. The sub-element araint_Point (“v1”) is declared along with the sub-
element Variant which includes a set of possible values for »7. It also contains elements
re. Title, Description, Level, Preconditions, Postconditions, Primary_actor, Secondary_actors,
Flow_of events, Exceptional_events, Superordinate_nse_case, and Subordinate_use_case that

describe the context of the use case

33

Use_Case UseCaselD="UC1”
System="MobilePhone”
Product_Member="PM1”
Existential Commonality_Variability = “Alternative”
Variant_Point v1
Variants vl {keying-in a phone number of a receiver, selecting a phone
number from a list of contacts}
Title Sending a Message
Description The phone is able to send a text message. The user can specify an
address of a receiver by selecting from a list of contacts.
Level User Goal
Preconditions The user has already selected function of sending a text message
from the main menu.
Postconditions The phone has sent the message.
Primary_actor The user
Secondary_actors -
Flow_of_events
Event 1 The system shows an editor for writing a message.
Event 2 The user inputs a phone number by [v1].
Event 3 The system displays the phone number to which the message is being
sent.
Event 4 The user enters the message and confirms sending the message.
Event 5 The system sends the message and displays an acknowledge on the
screen.
Exceptional_events -
Superordinate_use_case —
Subordinate _use_case —

Figure 3- 1: Use case Sending a Message

3.2.2. Feature Model

A feature model is a software artefact that describes the abstraction of domain knowledge
obtained from domain experts such as system users, analysts, and system developers, as
well as other sources such as books, user manuals, design documents, and source
programs. This technique was initially proposed in FODA to assist the activity of
domain analysis. Many approaches apply and extend the definition of a feature model to
support the development of product line systems. As the following, we summarise

different aspects of the feature modeling technique being applied in those approaches.

34

Types of Features in a Feature Model can be (1) mandatory features (Bosch 1998, Clements
and Northrop 2002, Griss et al. 1998, Kang et al. 1990, Kang et al. 1998, PuLSE, Weiss
1995) are compulsory for product members in a family; (i) optional features (Bosch 1998,
Clements and Northrop 2002, Griss et al. 1998, Kang et al. 1990, Kang et al. 1998,
PuLSE, Svahnberg et al. 2001, Weiss 1995) may exist in a specific product member or
not; and (iii) a/ternative features (Bosch 1998, Clements and Northrop 2002, Kang et al.
1990, Kang et al. 1998, PuLSE, Weiss 1995) or variant features (Griss et al. 1998), are a set
of possible features that can be selected for a specific product member. Moreover,
(Svahnberg et al. 2001) define a feature type external features that is a feature unavailable

in a system but needs to be satisfied by an external system.

Notations of Features in a Feature Model can be different. As shown in Figure 3-2, a
feature may be depicted as a round or a rectangle with its name inside. Many
approaches applied the feature notation defined in (Kang et al. 1990). However, some
approaches applied a UML class diagram for expressing features, for example (Griss et
al. 1998). Moreover, different types of a feature i.e. mandatory, optional, and alternative

are represented in different notations.

O
| Feature | | Feature |
Mandatory Optional Mandatory
Mandatory Optional
i
i PFeature
@ @ Alternative
Alternative
(@) (b) (©

Figure 3-2: different notations for different types of a feature: (a) (Kang et al. 1990); (b)
(Griss et al. 1998, Kang et al. 1998); and (c) (Svahnberg et al. 2001)

Ideally, features are atomic units that can be put together in a product without difficulty.
However, features are generally not independent and several types of relations can exist

between them. According to (Gibson et al. 1997), feature interaction is defined as a

35

characteristic of a system whose complete behavior does not satisfy the separate
specifications of all its features. The types of relationships express the rules of feature
interaction. These relationships are considered when features are selected for product
members. They represent which features must be selected together and which features

must not. Table 3-1 shows different types of relationships between features.

Table 3- 1 presents the classification of relationships between features:

Relationship type Description

depends-on (Griss et al. 1998) Indicating that a feature relies on an existence

of another feature

mutnally exclusive (Griss et al. 1998) | Indicating that two features must exist at the

same time

conflicting (Griss et al. 1998) Illustrating that related features have

conflicting requirements.

composed-of (Kang et al. 1998), | Indicating that a feature is composed of other

composition (Svahnberg et al. 2001) | features

generalization/ specialization (Kang et | Indicating that a child feature is specialized
al. 1998), OR specialization | from a parent feature
(Svahnberg et al. 2001)

wmplemented-by (Kang et al. 1998) Indicating that a feature is implemented by

another feature

XOR specialization (Svahnberg et | Indicating that children features are mutually
al. 2001) exclusive

Our approach, we extend the feature model proposed in FORM (Kang et al. 1998)
which is based on the feature model proposed by (Kang et al. 1990). More specifically,
the authors enhanced the feature model with a textual specification for each feature.
Our feature model describes the requirements artefacts of a product line system and

illustrates the features available in the line. Figure 3-3 presents an example of a graphical

36

hierarchy of feature for a mobile phone product line, while Figure 3-4 presents an

example of a textual specification for feature Texz Messages.

As shown in Figure 3-3, a feature is represented by a name and can be (i) mandatory,
when it must exist in the applications in the domain; (ii) gpzonal, when it is not necessary
to be presented in the applications in the domain; or (iii) @/fernative, when it can be
selected for an application from a set of features that are related to the same parent

feature in the hierarchy.

The features can be classified into four groups namely (1) application capabilities, signitying
features that represent functional aspects of the applications (e.g. calling, connectivity,
personal preference, and tool features); (ii) operating environments, signifying features that
represent attributes of the environment in which product members are used and
operated (e.g. network, input and output methods, and operating system features); (iii)

domain technologies, signifying features that represent specific implementation and

technological aspects of the applications in the domain (e.g. WAP and XHTML!

browser types; specific Java application support like mobile media and wireless

messaging application programming interface; SMTP, POP3, and IMAP42 network
protocol features); and (iv) wuplementation technigues, signifying features that represent
more general implementation and technological aspects of the applications, but not

necessary specific for the domain (e.g. PGP and DES encryption methods; AMR,

MIDI, and MP3 sound formats; and 3GPP and MPEG3 video format features).

Feature can also be related by different types of relationships. Examples of these
relationships are (1) composed_of, (i) generalisation/ specialization, and (i) mplemented by

relationship types.

L WAP: Wireless Application Protocol; XHTML: Extensible HyperText Markup Language.
2 SMTP: Simple Mail Transfer protocol; POP3: Post Office Protocol; IMAP4: Internet Message Access Protocol.

3 AMR: Adaptive Multi-Rate; MIDI: Musical Instrument Digital Interface; MP3: MPEG Audio Layer III; 3GPP: 3rd
Generation Partnership Project; and MPEG: Moving Picture Experts Group.

37

Application capabiliies

Making a call

Receiving a call

Connectivity

Infrared

(3
Data Transier
. Setling

Sending Data via USB

| Mobile phane |

Personal
FPreference

foch
., Setting

Calendar

[Updaing |

\+ Digital Camera

[Recelving Data via USE | |

Sending Data Sending Data Receiving Data
via Bluetooth via Infrared via Infrared
— — -
R\z?gﬁgﬂgf Re;z:mg Smart Adding Viewing Browsing WAP Saving WAP : WAPCunnectlon ,-’
seages Bookmark Bookmark Pages Pages urm,- Ry
- .
Operating environment X Fhune Book
. X - -
Input Methad - /./ . : RR
! Tl [Cutput Method | [Opérating system | 4 s
- R _/ - O ./
80 Keyﬁﬂd " - Device mterface.
(o | W _ ST T

suck
I

[GSM]BUD| |GSM1800| | GSMQUU [T

@W

| Graphlc screen Iext screen

Csmera q I‘Bluetoath Infrared

Domain technologies — (‘) a
5 |.Ia-vaTM suppcnl I Network protocol ‘ r Legend
S R - Featu.rs
(e] T PoF3]_ 2
- —Zo7C
-z
\WAP 1 21 Im - I I
J g [Encyption method | ! B Re'ﬂftmh@m—
[Timing data' | Sound fotmal | oz — - Cenaramratitn
4 Ra HEE e
AR | SR | Iratenente
) [WII [PeP | [oEs]
AAC | [M WAV

Figure 3- 3: The feature model of the mobile phone

As shown in Figure 3-4, the textual specification represents (i) a name, (ii) a description, (iii)
issues and decisions representing trade-offs, rationale, or justifications for including the
feature in an application, (iv) a #pe such as application capabilities, operating
environments, domain technologies, and implementation technologies, (v) commonality
indicating if a feature is mandatory, optional, and alternative, (vi) relationship with other
features such as composed-of, implemented-by, generalisation/specialization, (vii)
composition rule representing mutual dependency and mutual exclusion relationships to

indicate consistency and completeness of a feature, if any, and (viii) allocated-to-subsystem

indicating the name of a subsystem that contains the feature, if any

38

Feature-name: Text Messages

Description: The phone can edit, send, and receive a short text message

Issues and decision: Text message over mobile phone is a way of communication

Type: Application capability

Commonality: Mandatory

Composed-of: Sending Text Messages, Receiving Text Messages, Editing
Text Messages

Composition-rule: -

Allocated-to- Messaging

subsystem:

Figure 3- 4: Features in textual specification language.

As described eatlier, the requirement artefacts are specified in use case and feature
model. Since the use case represents the requirements of a product member, the feature
model represents the requirements of a product line. Both types of artefacts are
elaborated into other types of software artefacts in subsequent activities of product line
engineering i.e. design and implementation. The following section, we present the

software artefacts being applied with the process of software product line design.

3.3. Design Artefacts

According to the literature, some approaches such as (Clauss 2001, Gomaa 2004,
Keepence and Mannion 1999) are proposed to adapt UML diagrams for modeling
software product line systems. In our approach, we adopt UML class diagram, statechart
diagram, and sequence diagram to present the software product line architecture. In the

following, we described the details.

3.3.1. Class Diagram

In our approach, we extend the class diagram presented in (Clauss 2001) by adding some
elements. The diagram consists of elements as described following:
(1) Class Diagram — the element consists of three attributes, which are information of

the class diagram:

(a) Class_Diagram_ID — this attribute is identified as a class diagram;

39

(b) System — this attribute specifies which domain of product line is; and
(c) Product_Member — this attribute specifies for which product member the class

diagram is specified.

(2) Existential — this element is used to represent the existential of a class diagram. It
consists of an attribute Commonality 1 ariability — this attribute can be (i) mandatory, which
indicates a class diagram must be satisfied by product members; (ii) alfernative, which
indicates a class diagram must be satisfied and altered for particular product members;
and (iii) optional, which indicates a class diagram may or may not be satisfied by a product

member.

(3) Class — the element Class specifies a system component that is composed of
attributes, which describe properties of a particular class, and methods, which specify
operations of the particular class. According to (Clauss 2001), a class can be one of three
types for expressing variability in product line: (i) variationPoint, which represents a
variation point of product line; (ii) zariant, which represents an alternative of a particular

variation point; and (iii) optional, which represents an optional class.

(4) Relationship — the element Relationship describes an association between classes.
To capture and represent variability of a product member, classes can be associated by
applying one of two relationship types: (i) generalization/ specialization, which associates
between classes typed of variationPoint and variant; and (ii) association with cardinality 0...1,

which associates between any class and a class typed of optional.

As shown in Figure 3-5, we illustrate an extract of a class diagram for a product member. An
example of representing variability is that a class DisplayScreen is typed of variationPoint as
classes GraphicColourScreen and TextScreen are typed of variant. The relationship between
the class DisplayScreen and classes GraphicColourScreen and — TextScreen s

generalization/ specialization.

40

ImageFormat

SystemControl

-formatSize:yte
-farmathame:String

-lasthction:String
timefloat
-piowearfloat

[
Interface

+gelectSendMethod void
+sendDataaid
+operateToolApplication:void
+displayDatavoid
+dialCallvaid

+setDatavoid
+getFunctionaid
+operaterletwarkovaid
+acknowledgeyaid
+disconnectoid

+setlipoaid
+gynchranise il
+disconnectyoid

PCConnect SignalControl Call NetworkControl DisplayScreen
-periodCall:douhble -networkType:String -size.douhle
-dialMoiint -status:String -sized:double

+rannectvoid
+disconnectyvoid
+transferDatanoid

+sendDatavoid
+acknowledge:void

+searchAPairvoid

+endCallvoid

+divertCallvaid

+receiveCallvoid

+astahlishCallvoid

+establishConnection:yoid
+disconnectConnection:void
+restoreConnectionvoid

+displaySettingvaid
+displayFunctiontenuwoid
+showSendhethodvoid
+displayTimeStampvoid
+displayAcknowledgesoid
+displayyid

+operation? wvoid

Infrared

Bluetooth

+disconnectyoid
+searchAPairvoid
+connectyoid
+transferDatavoid

+transferDatawoid
+searchAPairvoid
+connectvoid
+disconnectyvoid

GraphicColourScreen

TextScreen

+displayFunctionMenuvoid
+graphicSettingvoid

+displayFunctionMenu:void

Figure 3- 5: An extract of a class diagram

3.3.2. State Chart Diagram

In our approach, we propose the extension of UML state chart diagram by adding some
elements. The diagram consists of elements as described following:
(1) State Chart Diagram — the element consists of three attributes, which are
information of the state chart diagram:

(a) State_Chart_Diagram_ID — this attribute is identified as a state chart diagram;

(b) System — this attribute specifies which domain of product line is; and

41

(c) Product_Member — this attribute specifies for which product member the state

chart diagram is specified.

(2) Existential — this element is used to represent the existential of a state chart diagram.
It consists of an attribute Commonality_1 ariability — this attribute can be (i) mwandatory,
which indicates a state chart diagram must be satisfied by product members; (ii) alternative,
which indicates a state chart diagram must be satisfied and altered for particular product
members; and (iii) opzonal, which indicates a state chart diagram may or may not be

satistied by a product member.

(3) State — the element State specifies the system’s particular status. The states of the
diagram can be representing some aspects of the variability. We define three types of a
state for expressing variability in a product line: (i) variationPoint, which represents a state
that initiates a variation point of product line; (ii) variant, which represents an alternative

states of a particular variation point; and (i) gpzional, which represents an optional state.

(4) Transition — the element Transition describes a driving method to transform a state
to another state. To capture and represent variability of a product member, a transition
can be specified as one of three transition types: (i) variantIransition, which describes one
of possible driving methods to transform a state to another state; (i) parameterransition,
which describes a transition requiring a parameter to drive the method; and (iii)
optionall'ransition, which describes a possible driving method to transform a state to

another state.

As shown in Figure 3-6, we illustrate an extract of a state chart diagram. An example of
representing variability is that states Idle and SavingPhoto are typed of variant state which
can be transformed from the state DisplayingArea which is considered as variationPoint.
The transitions from the state DisplayingArea to the state Idle and end state are alternative

transitions.

42

HOe = 9 mins

displayareaFunction setected

DisplaingArea exit selectad

. SavingFPhoto
takePhotoFunction selegted

TakingFhoto

Figure 3- 6: An extract of a state chart diagram

savePhotaFunction selected

3.3.3. Sequence Diagram

We also propose the extension of UML sequence diagram by adding some elements. The
diagram consists of elements as described following:
(1) Sequence Diagram — the element consists of three attributes, which are information
of the class diagram:

(a) Sequence_Diagram_1D — this attribute is identified as a sequence diagram;

(b) System — this attribute specifies which domain of product line is; and

(c) Product_Member — this attribute specifies for which product member the

sequence diagram is specified.

(2) Existential — this element is used to represent the existential of a sequence diagram.
It consists of an attribute Commonality_1ariability — this attribute can be (1) mandatory,
which indicates a sequence diagram must be satisfied by product members; (ii) alternative,
which indicates a sequence diagram must be satisfied and altered for particular product
members; and (iii) gptional, which indicates a sequence diagram may or may not be

satisfied by a product member.

43

(3) Sequence — the clement Sequence specifies an interaction between an object and
actor, or between objects. We propose three types of sequences for expressing variability
in a sequence diagram: (i) variationPoint, which represents a sequence that initiate a
variation point of later sequences; (ii) variant, which represents an alternative sequence of

a particular variation point; and (iii) gpzional, which represents an optional sequence.

(4) Message — the element Message basically represent a called operation from an
object interacting to another object. A message can be representing the variability of a
product member. Specifically, we propose three types of messages for expressing the
variability: (i) variantMessage, which is one of possible messages being sent from a
varaintPointSequence to another sequence; (ii) parameterMessage, which is a message requiring
a parameter to drive the method and (iii) optionalMessage, which is an optional message

that may or may not be sent on a sequence.

As shown in Figure 3-7, we illustrate an extract of a sequence diagram. An example of
representing variability is that the sequence 2.7.7 is specified as a variant point »7 and then the

sequences 2.7.1.1, 2.1.1.2, and 2.1.7.1.7 are variants of the variant point 7.

44

Keypadinterfa Keypad SystemContr DisplayScree Camera

User

| | |

| | |

1: keyin():void l : :

| ~ .

0;v9d. setFunction():Void :
1.1.1.1: displayAréa():void

1.1.1.2: display():\lfoid

|——1

|

| | |

) . | | |

2: keyin():void | | |

2.1: selectOptioh():void) | |

1 2.1.1: setFunction():yoid |
21.1.1: takePhotq() oid

i tdisptay (®
2.1.1.2:displayFE:crlonMenu :void

S B

Figure 3- 7: An extract of a sequence diagram

3.4. Summary

This chapter described the meta model for specification of a product line system. It has
presented the types of artefacts proposed in our approach for specifying the software
artefacts created during product line analysis and design. It also described and gave
examples of each types of software artefacts. In the next chapter, we describe a prototype

tool which is implemented in order to assist the use of our model.

Chapter IV Prototype Tool

This chapter presents the prototype tool that we have implemented to demonstrate our
work. It aims to illustrate how the tool can facilitate the activity by generating software
artefacts, particularly use case and feature model. Section 4.1 describes the overview and
functionalities of the tool. Section 4.2 presents the interfaces of the tool. Section 4.3

summarises the chapter.

4.1. Overview

In order to evaluate and demonstrate our approach, we have implemented a prototype
tool. We envisage the use of our tool as a general platform for creating the software

artefacts for product line’s analysis and design. The tool has been implemented in Java.

Figure 4-1 illustrates the architecture of our tool. The tool is composed of four
components, namely:
(a) Interface — This component provides the user interfaces for a user to specify the
type of documents to be created.
(b) Generator — This component generates a document according to the specific type.
(c) Display — This component presents a document created by the tool.

(d) Converter — This component transforms a document to be in XML format.

According to Figure 4-1, the Interface component is responsible for communication with a
user for specifying the type of document being created. The component Generator is
composed of two sub-components: implemented and embedded. Consider in Case (a), a user
requests to create a document typed of use case or feature model, the implemented generator
component is invoked. Consider in Case (b), a user requests to create a document typed
of class diagram, state chart diagram, or sequence diagram, the ewbedded generator which is

embedded with some existing tool is invoked to provide the creation of the document.

46

The Display component is used to display a document created by the tool. Additionally,
the Converfer component can be used to transform the document created by the tool into

XML format.

#| Generator —

/

Interface

/ |Do<:uments

#| Display

/

f 3

XML-based
I Schemas
ocuments

Converti;

Figure 4- 1: The Architecture of our Tool

The various components of the prototype tools support various functionalities. These
functionalities include:
(i) Document Creation, which is concerned with the generation of different typed
documents based on the specification of a user;
(1) Document Visualisation, which is concerned with the representation of the document
generated in (i).
In the following, we explain these functionalities in more details.

I. Document Creation

47

In order to support this functionality, the tool provides sophisticated user interfaces in
which a user can select a type of documents to be created. More specifically, this
functionality allows the user to create a document according to the proposed model. For
any of cases (a) or (b) above, the user can select to create a document for the whole
product line or a particular product member. In the other word, the tool can generate a
document in different levels of granularity, namely: (a) at the level of specific product
members; and (b) at the level of product line. The generation of documents is executed
by the components in the tool i.e. mplemented generator and embedded generator. Particularly,
we apply some existing UML tools i.e. Borland Together [] to create a class,

sequence, and state chart diagrams for the embedded generator component.

In Section 4.2, we show user interfaces for this functionality and an example of using the

interfaces in which the type of documents a user has selected to be created.

II. Document Visualisation

The generated documents are recorded and represented in XML documents. The XML-
based documents represent the structure of a document including proposed elements as
described in Chapter 3. This functionality provides a user to access a concrete element of

each document in term of XML element.

4.2. Interface

This section illustrates the user interfaces of the prototype tool and describes how a user
can execute the various activities supported by the tool. We illustrate the use of the tool

by giving examples based on the mobile-phone systems.

4.2.1. Selecting Specific Type of a Document

As shown in Figure 4-2, this interface supports the functionality of Document Generation. 1t
allows a user to specify the types of documents to be created and consists of four main

parts:

(2)

(b)
©

48

a panel that is composed of two sub-panels, namely requirement, and design. Bach
sub-panel contains different icons representing the various types of documents
of each development phase. The requirement sub-panel contains use case and feature
model icons representing documents produced during the analysis phase. The
deszgn sub-panel contains cass diagram, statechart diagram and sequence diagram icons
representing documents produced during the design phase. Table 4-1 shows all
the icons representing the various documents.

a panel that shows the selected type of document to be created.

a panel with two buttons “OK” and “Cancel”, which either presents the next
interface or abort the command of document creation, respectively. In the case
(a) a user selects to create either use case or feature model, the tool calls the next
interface; or case (b) a user selects to create class, sequence, or state chart

diagram, the tool invokes embedded tool, specitically, Borland Together.

=

=Joed

File Options

SELECTED ARTIFACT!

DESIGN

Lhagram

Figure 4- 2: An interface for specifying the type of software artefact to be created

Figure 4-3 illustrates how to work with the interface.

49

Table 4- 1: Icons in panel (a)

Sub-panel Icon Software Artefact Type
Requirements Use case
Requirements Feature model

Design Class diagram
Design Sequence diagram
SElLETLE
Lhiagram
Design Statechart diagram

Firstly, the user selects a type of document by clicking on its respective icon in

panel a.

Secondly, the system displays the selected type of document in panel 4.

Next, the user either selects the “OK” button to precede an action of document

creation or the “Cancel” button to abort the action.

50

& mE=]

File Options

DESIGN

SELECTED ARTIFACTS

Figure 4- 3: Example interface demonstrating specifying of types of document artifacts

4.2.2. Specifying a Use Case

As shown in Figure 4-4, this interface also supports the functionality Document Generation.
This interface consists of:
(a) a panel that shows a list of elements to be consisted in a document. The elements
following from the type of document selected from the previous interface (Figure
4-3). The example in Figure 4-4 shows the elements for a use case.
(b) a panel with two buttons, namely “Generate”, and “Cancel”, which are related to

actions for generating a use case, and aborting the creation, respectively.

51

5 USE EdSE Ereahun I; Iﬁ E

Uge Case D

rmmaonalityhariaklity

Variant Point |

Yaraints I

Description |

Lewvel I

reconditions I

Primary Acto

Secondary Actor

Exceptional nts I b
Superurdinase case I /

Subordinate use case I !
(L/ Generate || Cancelp

Figure 4-4: An interface for creating a use case

Flow of events

The example shown in Figure 4-5 follows from the specification in the example in Figure

4-3. This shows the case in which the user has selected to create a use case.

52

Q; UUse Case Creation uw
Uge Case D |UC1
Systemn |MDbiIePthe
Product Member |F'n-11
Comrmonality®ariablity IAIternative
Wariant Paint IV'I
araints |keving—in a phone number of & receiver, selecting a phone number from a list of contacts
Description |The phaone is able to send atext message. The user can specify an address of a receiver by =
Level IUserGual
Freconditions |The user has already selacted function of sending a text message from the main menu.
Fosteonditions |The phone has sentthe messange.
Frimary Actor IThe uzer
Secondary Actor I
Flow of events |The systerm shows an editor for writing a message.

Figure 4- 5: Example of specifying a use case

4.2.3. Specifying a Feature Model

As shown in Figure 4-6, the interface also supports the functionality Document Creation.
This interface consists of:
(a) a panel that shows a list of elements to be contained in each feature;
(b) a panel that shows the tree-structure of a feature model in which contains
specified features;
(c) a panel with two buttons, namely, “Generate” and “Cancel” which are related to
actions for generating a feature model, and aborting the creation, respectively.

The example is shown in Figure 4-7.

53

o Feature Model Creation M

Feature Marme

Related

| @arate || Canca—_’ c

Figure 4- 6: An interface for specifying a feature model

& Feature Model Creation M

Feature Mame |Te}d he=sage
Description |The phone can edit, send, and receive a shorttext message
Issue and Decision |Te)€t message over mohile phone is 2 way of communication
Type |App|icati0n capahility
Exiztential |ru1andat0r\,r
Relationship Type |Composed—0f Add
Felated Feature I Reset

Composed-af

Sending Text Messages
Receiving Text Messages
Editing Text Messages
Sending Text Messages|
Receiving Text Messages
Editing Text Messages

| Generate || Cancel |

Figure 4- 7: Example of specifying a feature model

54

4.2.4. Converting a document into XML

To support the functionality Document 1 isualisation, the tool allows a user to transfer a
document into the Extensible Markup Language (XML) format. Our approach supports
the XML technology since there are several reasons:

(@) XML has become the de facto language to support data interchange among

heterogeneous tools and applications; and

(b) the existence of large number of applications that use XML to represent information
internally or as a standard export format (e.g. Unisys XML exporter for Rational Rose

(IBM), Borland Together (Borland), ArgoUML (ArgoUML).

Figure 4-8 presents an interface to transform a document into XML. Initially, the
documents of our concerned are translated into XML by using a Converfer component. In
the case of the class, sequence, and state chart diagrams, the XMI format is generated by

using commercial XMI exporter (e.g. Unisys XMI exporter for Rational).

(@)

Converter - ||O m

Schema: [Mo schema lnaded || Load Schera H Cancel |

File: |N0ﬂleluaded |‘ Load File H Cancel ‘

Figure 4- 8: An interface to transfer a document into XML

4.3. Summary

This chapter has presented the prototype tool including its functionalities and user
interfaces. The chapter has illustrated the use of the tool to partly support the

specification of software product line artefacts.

Chapter V Evaluation and Analysis

In this chapter, we evaluate and analyze our work. Section 5.1 describes an overview of
our evaluation, the different scenarios used to evaluate our work, and an outline of how
the evaluation was conducted. Section 5.2 presents the results of the evaluation and

analyze these results. Section 5.3 summarises the chapter.

5.1. Evaluation Objectives and Methods

The objective of the evaluation is to:
evaluate whether the model helps an organization in making

software product line artefacts more precise and consistent.

According to the above evaluation objective, this testing was inducted by concerned the

following factors:

5.1.1. Selection of Participants

The testing scenarios used in our evaluation were based on two main factors. The first
factor was concerned with the different ways in which organizations can develop
product line systems. As proposed in (Krueger 2001), organisations can develop product

line systems in three different ways:

(a) when an organisation decides to analyze, design, and implement a line of products
prior to the creation of individual product members (proactive approach),

(b) when an organisation enlarges the product line systems in an incremental way
based on the demand for new product members or new requirements for existing

products (reactive approach); and

56

(c) when an organisation creates a product line based on existing product members

by identifying and using common and variable aspects of these products (extractive

approach).

According to the organizations, we found that these approaches are not mutually
exclusive and can be used in combination. For instance, it is possible to have product line
systems initially created in an extractive way to be incrementally enlarged over time by

using a reactive approach.

Particularly, we randomly selected up to 50 organisations of different business areas such
as software production, financial, trading, logistics, airlines, insurance and so on by
analysis the infrastructure of the organizations. We applied CMM standard for justifying
the organisations to be participated in our study. Specifically, the criteria which we
applied to justify the organisations for our testing are: (i) maturity, (ii) size, and (iii)

number of software products.

The second factor was concerned with the participants involved in the product line
system development process. Participants are stakeholders who are involved in this
process ranging from market researchers, to product managers, requirement engineers,
product-line engineers, software analysts, and software developers. These stakeholders
contribute in different ways to the product line system development process, have
distinct perspectives of the system, and have distinct interests in different aspects of the
product line systems. For example, a market researcher may be interested in the
requirements and features of a new product member to be developed, while a software
developer may be interested in the design and implementation aspects of this new
product member. Therefore, the stakeholders would be interested in different types of
documents that may assist them in their various tasks during system development. Note
that these participants have experienced in the legacy system of their organizations but

not necessarily have the knowledge of software product line systems.

57

5.1.2. Test Cases

In order to take into consideration the various ways of developing product line systems,
the heterogeneity of stakeholders, and document types. The five scenarios used in our

testing include:

(a) the creation of a new product member from existing product line;

(b) the creation of product line from already existing products in their organisations;
(c) changes to a product member in a product line;

(d) changes to the core assets of a product line; and

(e) impact of changes to the core assets of a product line to a product member.

For each of these scenarios we have identified the stakeholders involved in the process
and the types of documents according to the meta model that are related to the
scenarios. We asked our participants to perform some of above tasks twice: (i) by
applying the prototype tool prepared by the author (see in Chapter 5); and (ii) by
manually performing. Manual practice may subject to applying any existing software of
the organizations. The results of each task are software artefacts which are developed
according to the meta model. The types and number of software artefacts are various in
each task. The author has prepared the software artefacts for some tasks as required.

Each task is described below:

(a) Task 1: The creation of a new product member from existing
product line

This situation occurs when an organisation wants to enlarge its system and creates a new

product member. In this case, a set of requirements and design are being generated by

considering the existing documents e.g. feature model, class diagrams. As shown in

Figure 5-1, the stakeholders involved in this case are:

(a) market researchers (or persons who act as market researchers) that are

responsible to identify the feasibility of producing a new product and the features

(b)

©

(d)

©)

58

that this new product should include from a commercial point-of-view;
requirements engineers and product managers (or persons who act as
requirements engineers and product managers) that specify the requirements of
the new product;

product line engineers, product managers, and software analysts (or persons who
act as product line engineers, product managers, and software analysts) that
identify which aspects in the core assets of a product line are related to the new
product;

software analysts and software developers (or persons who act as software
analysts and software developers) that analyse existing product members and
identify the commonality and differences between existing product members and
the new product; and

software developers (or persons who act as software developers) that design the
new product by reusing parts of existing product members and specifying new

aspects of the product being developed.

59

tarket researcher O

survey and collect requirement far
new product member

specify the regquirements for new Product rigggier

Requirement product mermber
ehgineer

identify to the product-line
% architecture

Software analyst

Product-line
engineer

identify the relations of those
aspects between product-line

Software

O developer

design for new system

Figure 5- 1: Scenario for Task 1

For this scenario, it is necessary to compare various documents of a product line,

documents of existing product members and new product member.

(b) Task 2: The creation of product line from already existing
products

As shown in Figure 5-2, the stakeholders involved in this case are:

(a) product managers (or persons who act as product managers) that identify which

aspects of the product members should be part of the product line;

60

(b) product line engineers, software analysts, and software developers (or persons
who act as product line engineers, software analysts, and software developers)
that design the documents at the product line level; and

(c) software analysts and software developers (or persons who act as software

analysts and software developers) that develop the documents at the product line

@K/’%

Praduct manager
identify comrmon and different

% features between phone models

level.

Software
developer
design the software product-line

architecture \
Software analyst\>© Froduct-line

engineer

develop the software product-line
architecture

Figure 5- 2: Scenario for Task 2
For this scenario, it is necessary to compare various documents of existing product

members.

(c) Task 3: Changes to a product member in a product line

As shown in Figure 5-3, the stakeholders involved in this case are:

(a) software analysts (or persons who act as software analysts) that specify changes
to be done in a design part of a product member; and

(b) software analysts and software developers (or persons who act as software
analysts and software developers) that identify the effects of these changes in the

other related design software artefacts.

61

specn‘y a change
Software

developer
Uﬂware analyst

identify an effect to other software
antefacts

Figure 5- 3: Scenario for Task 3

(d) Task 4: Changes to the core assets of a product line

As shown in Figure 5-4, the stakeholders involved in this case are:

(a) market researchers (or persons who act as market researchers) that identify new

features of the system; and

(b) product-line engineers (or persons who act as product-line engineers) that identify
which aspects in the core assets of the product family are related to the new
features and the effect of these new features to the other documents at the

product line level.

ﬂsur\tey and collect requirements of
changes frorm the market
Praduct-line

Market researcher © engineer

identify related features and effects
to product-line architecture

Figure 5- 4: Scenario for Task 4

62

(e) Task 5: Impact of changes to the core assets of a product line and
product members

As shown in Figure 5-5, the stakeholders involved in this case are:

(a) product line engineers (or persons who act as product line engineers) that identify
the changes to be done at the subsystem; and

(b) software analysts and developers (or persons who act as software analysts and
developers) that identify the effect of these changes at the product member

design documents.

e

identify a subsystermn to be
changed

engineer /Soﬂware analyst

identify design artefacts related to
Software the changed subsystem
developer

FProduct-line

Figure 5- 5: Scenario for Task 5

5.1.3. Measurement of Test

In this evaluation, we have conducted sets of testing related to five different scenarios of
product line system development. The tests are justified by concerning two aspects.
Firstly, we have used the following standard definition of recal/ and precision given in
(Faloutsos and Oard. 1995). The authors described that precision measure represents the
soundness of documents to be retrieved due to an inquiry and recall measure represents
the proportion of the relevant documents. We then adopt the measurement techniques
to capture the commonality and variability of a product line system. Particularly, we

compare the creation of software product line artefacts according to the meta model (a)

63

by applying the prototype tool and (b) by manually performing. As the following, the

precision and recall are calculated by:

Precision = | STNUT| / | ST |
Recall= | STNUT| / | UT|
where
e ST is the set of artefacts which are available in a system;
e UT is the set of artefacts which are specified by participants; and

e | X| denotes the cardinality of the set X, in which represents the artefacts are

specified validly.

Note that an artefact which is considered in a test is a fine-grained element of document.
Secondly, we measured the time to complete a task when users were proceeding each
one of test cases with normal procedure and available tools, and the time to complete the
same task with the proposed model and prototype tool. We also asked the participants to
fill in our questionnaire containing the questions with a five-point scale to measure
aspect of use. The score of each aspect of use—easy to decide to next step, easy to
understand the requirements and design, easy to literate and locate information and
overall satisfied with analysis and design based on a five-point scale that score 1 =

Strongly Disagree, 2 = Disagree, 3= Neutral, 4 = Agree and 5 Strongly Agree.

5.2. Evaluation Results and Analysis

In this section, we present the results of our evaluation for objective described in Section

5.1 and analyze these results.

In the tests, we have organized groups of participants which properties are fitted into our
criteria (see Section 5.2.1). Moreover, the tests are subject to the development of
software domain with which the participants are familiar. Every test, we have prepared
the participants the software requirements in text, as some tests, some software artefacts

are provided by the author. This is due the different objectives of the tests as described

64

in Section 5.1.2. Additionally, since it is an agreement between the author and
participants. We do not explicit the source and profile of participating organisations in
this report due to the confidential issues. Each group is assigned to perform some tasks
(as describe in Section 5.2.2). Table 5-1 shows the participation of each group for each

task.

Table 5- 1: Participation of each group for each task

Task 1 Task 2 Task 3 Task 4 Task 5
Group 1 v v v
Group 2 v v v v v
Group 3 v
Group 4 v
Group 5 v 4 v v

Table 5- 2: Summary of requirements and design artefacts created or changed in each

task by all groups
Task 1 Task2 | Task3 | Task4 | Task5
(from 3 | (from4 | (from3 | (from2 | (from 2
tests) tests) tests) tests) tests)
No. of expected requirements 243 1078 113 40 44
artefacts to be created or changed
No. of actual requirements artefacts 227 971 100 35 40
created or changed
No. of expected design artefacts to 347 1417 111 67 40
be created or changed
No. of actual design artefacts to be 270 1313 100 56 40
created or changed
Total no. of expected artefacts to be 590 2495 224 107 84
created or changed
Total no. of actual artefacts that are 497 2284 200 91 80
created or changed

We manually counted the number of software artefacts created in the tests. As shown in
Table 5-2, the number of requirements artefacts are created by applying the prototype
tool is 243 as the number of requirements artefacts are manually created is 227. These
numbers are accumulated from three tests (performed by three groups as shown in Table
5-1). The figures in the table show the difference of the numbers of software artefacts
that are created in the same task and having the same software requirements. Moreover,
Tables 5-3 to 5-7 show a summary of the number of requirements and design artefacts

created or changed in each task by different group.

65

Table 5-3: Summary of requirements and design artefacts created in Task 1

UT ST
No. of requirements artefacts identified by Group 1 166 172
No. of design artefacts identified by Group 1 154 192
Total no. of artefacts identified by Group 1 320 364
No. of requirements artefacts identified by Group 2 36 43
No. of design artefacts identified by Group 2 28 61
Total no. of artefacts identified by Group 2 64 104
No. of requirements artefacts identified by Group 5 25 28
No. of design artefacts identified by Group 5 88 94
Total no. of artefacts identified by Group 5 113 122

Table 5-4: Summary of requirements and design artefacts created in Task 2

UT ST
No. of requirements artefacts identified by Group 2 368 437
No. of design artefacts identified by Group 2 554 615
Total no. of artefacts identified by Group 2 922 | 1052
No. of requirements artefacts identified by Group 3 266 272
No. of design artefacts identified by Group 3 354 371
Total no. of artefacts identified by Group 3 620 643
No. of requirements artefacts identified by Group 4 102 97
No. of design artefacts identified by Group 4 87 99
Total no. of artefacts identified by Group 4 189 196
No. of requirements artefacts identified by Group 5 235 272
No. of design artefacts identified by Group 5 318 332
Total no. of artefacts identified by Group 5 553 604

Table 5-5: Summary of requirements and design artefacts changed in Task 3

UT ST
No. of requirements artefacts identified by Group 1 16 17
No. of design artefacts identified by Group 1 15 12
Total no. of artefacts identified by Group 1 31 29
No. of requirements artefacts identified by Group 2 22 23
No. of design artefacts identified by Group 2 12 14
Total no. of artefacts identified by Group 2 34 37
No. of requirements artefacts identified by Group 5 62 73
No. of design artefacts identified by Group 5 73 85
Total no. of artefacts identified by Group 5 135 158

Table 5-6: Summary of requirements and design artefacts changed in Task 4

UT ST
No. of requirements artefacts identified by Group 1 27 32
No. of design artefacts identified by Group 1 34 40
Total no. of artefacts identified by Group 1 61 72
No. of requirements artefacts identified by Group 2 8 8
No. of design artefacts identitied by Group 2 22 27
Total no. of artefacts identified by Group 2 30 35

66

Table 5-7: Summary of requirements and design artefacts changed in Task 5

UT ST
No. of requirements artefacts identified by Group 2 23 27
No. of design artefacts identitied by Group 2 28 25
Total no. of artefacts identified by Group 2 51 52
No. of requirements artefacts identified by Group 5 17 17
No. of design artefacts identified by Group 5 12 15
Total no. of artefacts identified by Group 5 29 32

Additionally, Table 5-8 shows, for each case, a summary of the number of artefacts
created or changed in the tests. In the table, ST is the set of artefacts expected to be

created or changed; and UT s the set of artefacts created or changed.

Table 5- 8: Summary of artefacts involved in the tests

Test 1 Test 2 Test 3 Test 4 Test 5
UTgroup 1 320 31 61
ST group 1 364 29 72
| STgroup1 M UT group| 309 26 58
UTgroup 2 64 922 34 30 51
ST group 2 104 1052 37 35 52
| STgroup2 N UTgroup 2| 61 887 32 28 43
UT group 3 620
ST group 3 643
| STgroup 3M UTgmup 3 | 607
UTgroup 4 189
ST group 4 196
ST group 4 N UTgroup 4| 179
UTgoup s 113 553 135 29
ST group 5 122 604 158 32
| ST group5 N UTgroup s | 110 548 129 26

Table 5-9 shows the results of our testing for each test in terms of recall and precision
rates. The results shown in Table 5-9 provide positive evidence about our approach to
apply the meta model to specify software product line artefacts at a high level of recall

and precision.

67

Table 5- 9: Precision and Recall Rates (%)

Test | Test | Test | Test | Test | Average Precision/
1 2 3 4 5 Recall of each group
Precision of group 1 0.85 0.90 | 0.80 0.85
Precision of group 2 0.59 | 0.84 | 0.86 | 0.80 | 0.83 0.78
Precision of group 3 0.94 0.94
Precision of group 4 0.91 0.91
Precision of group 5 0.90 | 091 | 0.82 0.81 0.86
Average Precision of | 0.78 | 0.90 | 0.86 | 0.80 | 0.82 0.83
all tests
Recall of group 1 0.97 0.84 | 0.95 0.92
Recall of group 2 095 | 096 | 094 | 093 | 0.84 0.92
Recall of group 3 0.98 0.98
Recall of group 4 0.95 0.95
Recall of group 5 097 | 099 | 0.96 0.90 0.96
Average Recall of all | 096 | 097 | 091 | 0.94 | 0.87 0.93
tests

We applied the histograms to compare the precision and recall in the testing. Figure 5-6
shows that the precision figures in all the cases and the recall figures in all the tests are
not so significant. On average, the performance of our approach in terms of precision

and recall measurements in tests seems to be consistent.

——Test 1

—a—Test 2

Test 3

—x—Test4

—%—Test5

—e— Average Precision/
Recall of each group

Figure 5- 6: Precision and recall figures of each group as well as
the average precision and recall of all tests

68

Additionally, the time spent during the generation of the software product line artefacts
in the tests varies depending on the size of the artefacts and the number of requirements
and design artefacts. For example, in Task 2, the processing time in the tests with groups
2 and 5 took much longer than groups 3 and 4 which are significantly smaller. Moreover,
the experience and expertise of stakeholders who involve the specification process also
contributes to an increase of the processing time. Table 5-10 shows the summary of
approximate time spent in each test. As shown in Table 5-10, some cells has no data

since those groups did not participate in the tasks. For example, group 1 took part in

Tasks 1, 3, and 4 but not in Tasks 2 and 5.

Table 5- 10: Summary of approximate time spent in each test (hours)

Task 1 Task 2 Task 3 Task 4 Task 5
Group 1 22 - 6 1 -
Group 2 12.5 37 2 0.5 4
Group 3 - 4 - - -
Group 4 - 6.5 - - B
Group 5 3 16 0.5 - 3.5

Moreover, after completely all tasks, the subject was observed regarding attitudes toward
various aspects of software specification without and with the meta model. The results
are summarized in Figure 5-7. Figure 5-7 depicts how participants evaluated the applying
of the meta model for specifying software product line artefacts i.e. requirements and
design artefacts through our questionnaire. As seen in the figure, the participants agreed
average of 3 scores ease of deciding next step in specification with the conventional
software engineering methodologies, while they agreed 4.3 scores with our approach.
Similarly, ease of understanding the rational of systems, the participants agreed on
average of 2.3 scores with the conventional software engineering methodologies and 4.5
scores with our approach. Ease of locating the information, the participants agreed 3.1
scores and 4.4 scores for the conventional documents and our proposed documents
respectively. On the average, participants feel more satisfied with specification of
software product line systems when applying our meta model than conventional methods

and techniques.

69

@ Conventional
approaches

m Our approach

Easy to decide to Easy to Easy to locate the Overall satisfied
next step understand the information w ith specification
rational of
systems

Figure 5- 7: Comparison of Qualitative User Evaluation on conventional software
engineering approaches and our approach for specification of software product line
systems

5.3. Summary

This chapter has illustrated the tests and their results. We have observed and evaluated
the results of software product line specification by applying with the precision and recall
measurements. In addition to, the explanations of results have been given. The
evaluation and analysis leads to the conclusion of this research that will be presented in

next chapter.

Chapter VI Conclusions and Future Work

We provide in this chapter the conclusions, findings, and future work of this research.
Section 6.1 presents the overall conclusions. The findings of this research and the future
work are described in Section 6.2 and Section 6.3, respectively. The final remarks are

listed in Section 6.4.

6.1. Overall Conclusions

This research has contributed to specifying the software product line artefacts in a

systematic way. We summarize below the contributions in this research.

A meta model for product line systems — In this research, we proposed a meta model
for product line systems in Chapter 3. The concepts and motivation are derived from the
background in Chapters 2 and from the survey of the organisations. The model is
composed of document types. Firstly, it includes a set of documents created during the
analysis process of product line systems. Two types of documents are concerned, namely:
(a) feature model used to represent reference requirements of product line systems; and (b)
use case used to represent requirements of product members. Seconding, it includes a set
of documents created during the design process of product line systems. Three types of
documents are concerned, namely; (a) cass diagram, (b) sequence diagram, and (b) statechart

diagram used to represent design models of software product line.

The demonstration and evaluation of the approach — The prototype tool in Chapter
4 is implemented in Java to facilitate the demonstration and evaluation of the approach.
The main functionalities of the tool are namely: (a) Document Generator, specifying
documents for software product line systems; and (b) Document Presenter, recording and

representing the documents created by Document Generator.

71

Additionally, five cases are created to demonstrate different situations of software
product line development, involving (a) different types of documents; and (b) different
stakeholders. The experiments of document creation have been evaluated by considering
two criteria: (i) easy and (i) specifying documents. For the latter criteria, the precise and

recal/ measurements are used.

6.2. The Findings

We summarize below the findings in this research.

6.2.1. Problems of the Establishment and Maintenance of Product
Line Systems in Organisations
Many approaches have been proposed to support the development of product line

systems. However, there are many associated problems which we describe in this section.

I. The Difficulty to Get Support from Organisations

Due to timing constraints, an organisation usually considers available methodologies
rather than establishing product line. Additionally, an organisation has defined and used
the current development process for a certain period of time. The organization prefers
adopting familiar and practical techniques to support the development process rather

than unfamiliar techniques.

I1. The Uncontrolled Growth of Variety

Ideally, the establishment of product line needs to have a stable and clear vision of
domain; however, it needs to be flexible enough to evolve new requirements. Practically,
an organization is uncertain about requirements of product members and develops extra

options to anticipate all possible requirements.

72

I1I. The Difficulty in Communication

Product line system development is a collaborative process where people from various
disciplines need to communicate each other. In other words, communication is required
to facilitate and improve the software system development. For example, Meyer (Meyer
1998) suggested that the interaction between stakeholders e.g. between the development
team and manufacturing team should be concerned. In addition to (Finkelstein and
Guertin 1998), the authors proposed that good communication provides the right
requirements at the right time and the right place. Precise requirements must be known

in order to facilitate actual implementation.

However, it is not easy to support communication between various groups of
stakeholders in an organisation. Successful communication between stakeholders
depends on various factors such as: (i) sufficient resources e.g. staff or tool to facilitate
the communication; (ii) differences in organisational cultures; (iii) distinct organisational
structures; and (iv) stakeholders’ attitudes and aspirations. Unsuccessful communication
in an organization leads to misunderstanding and lacks of some concepts during the

development of software systems.

IV. The Difficulty of Defining Commonality and Variability
Defining commonality and variability of product line is to thoroughly discover the
product line descriptions including all common and possible variable aspects. However,

there are two issues which cause the difficulty of the practice. These issues are:

Different Perspectives

It is difficult to share views between different products and represent opinions between
different tools. For example, sales engineers can offer a new combination of
requirements, which seem perfectly reasonable from a customer viewpoint, but appear to
be unproved in the technology domain. This difficulty to describe different perspectives

of an artefact causes the difficulty of defining commonality and variability.

73

Lack of Knowledge
Defining commonality and variability of product line needs stakeholders who have
enough experience, knowledge, responsibility and authority. However, it is not easy to

tind stakeholders who are qualified and also available to take this task in charge.

V. The Difficulty of Documenting Management

Data in product line systems rapidly grow as the number of product members in product
line increases. Bosch (Bosch 1998) described that stakeholders need to interpret
documents and discover relevant documents; therefore, it is important to specify the
documents clearly and validly. However, there is a large number and heterogeneity of
artefacts and relationships between those artefacts in the domain of product line systems.
It is difficult to document the semantics between documents. The difficulty of
documenting management leads the following issues: (i) wissing semantics — documents
miss to express the semantics of the context; (i) failure of interpreting the semantics —
stakeholders fail to interpret the semantics of documents; (iii) #zzssing of relevant documents —
stakeholders miss discovering all related documents of interest to them; and (iv) fazlure of

searching documents — it 1s difficult to locate the documents efficiently and promptly.

VI. The Confliction and Dependency between Artefacts in Product
Line Systems

Ideally, a feature is an atomic unit and a set of features can be put together to fit with a
product member’s requirements. However, features are not actually independent. Adding
or removing a feature to or from product line has an impact on other features.
Additionally, a feature is also related to other types of artefacts in a product line.
Therefore, adding or removing an artefact has also an impact on other different artefacts.

It leads a difficulty to development and maintenance of product line systems.

VII. The Difficulty to Specialise Variability
Variability can be specialized in different phases i.e. design, implementation, compile,
linking, or run-time. However, there are some difficulties in specialization for variability

such as: (i) feature interaction — specialization of a feature can lead other features in a

74

product line to have unexpected results; and (ii) separation of concern — some variability are

separated into different artefacts; however, this can lead to the difficulty of specialization.

VI.1 VIII. Issues of Evolution of Product Line Systems

There are some situations that require the evolution of product line systems such as: (i)
there is a change on existing product line; and (i) the core assets of product line have
missed some functionalities. These situations occur when the maturity level of product
line systems in an organization has grown. The organisation requires a software process
which implements new requirements and maintains the consistency of existing systems.

However, the issues of evolution are found and defined in (Bosch 2000).

6.2.2. Precision and Recall Measurement

This research has shown that some degree of systematic process in creating software
artefacts which can be partly facilitated by the prototype tool. The creation of documents
captures the semantics that are represented through the structure of each document type.
As shown in this research, the results of creation are measured by using precision and recall
rates. The average precision measured as 85.3% and average recall measured as 83.3%.

The results shown in the research are giving positive to the approach.

6.2.3. Benefits

The research has demonstrated the possible situations of the use of meta model during
the development of product line systems. We describe below the benefits of use:

I. Reuse

The research has found that the degree of reusing core assets of product line systems
affects the cost of the development of the systems. The cost of the product line system
development depends on the proportion of reuse of the core assets for the development
of product members. However, the poor reuse would have caused higher cost to the
product family system development. The specification of software product line artefacts

influences the development by reducing the cost i.e. effort and time.

75

I1. Understanding

The research has shown that different stakeholders, who have different experiences in
the product line system development process, have different perspectives regarding to
software artefacts. Several artefacts are used to represent stakeholders’ requirements and
design. Coarse-grained software artefacts such as common and variable aspects in feature
models and fine-grained software artefacts such as ones in use cases are illustrated
though the schema of each software artefact type and can facilitate the understanding of

the generated documents.

6.3. Future Work

A number of possible directions for further investigations have been identified. We
provide in this section future work of the research, what needs to be done to improve

the approach and to increase the benefits of the approach:

e Tool for Document Generation and Visualisation: As shown in this
research, a large number of various artefacts can be generated for a product
line system. It is therefore believed that the approach could benefit by
providing tool fully support for the specification of documents. In addition,
sophisticated techniques for visualization could support the wuse of
documents more efficiently.

¢ Domain Implementation: The research has focused on two main activities
of product line system development i.e. analysis and design. The approach
could be expanded to cover the activity of implementation in order to

complete the whole life-cycle of the development of product line systems.

6.4. Final Remarks

This research has presented the approach for software product line specification. The
research in this research has been contributed to:
- provide the background of product line systems (Chapter 2);

- present the meta model (Chapter 3);

76

- illustrate the prototype tool (Chapter 4);

- demonstrate and evaluate the approach (Chapter 5).

Bibliography

America, P., H. Obbink., J. Muller, and R. Van Ommering. 2000. COPA: A Component-
Oriented Platform Architecting Method for Families of Software Intensive
Electronic Products. Tutorial in: The First Conference on Software Product Line
Engineering (SPLCT), Denver, Colorado.

Arango, G., and R. Prieto-Diaz. 1991. Domain Analysis Concepts and Reseach
Directions. Domain Analysis and Software Systens Modelings: 9-31.

Ardis, M. A., and D. M. Weiss. 1997. Defining Families: The Commonality Analysis.
Pages 649-650. the 19th International Conference on Software Engineering. ACM Press
New York, NY, USA, Boston, Massachusetts, United States.

Atkinson, C., J. Bayer, C. Bunse, E. Kamsties, O. Laitenberger, R. Laqua, D. Muthig, B.
Paech, J. Wust, and |. Zettel. 2002. Component-based Product 1.ine Engineering with
UML.. Addison-Wesley.

Bass, L., P. Clements, and R. Kazman. 2003. Software Architecture in Practice. Addison-
Wesley Professional.

Bayer, J., O. Flege, P. Knauber, R. Laqua, D. Muthig, K. Schmid, T. Widen, and J.-M.
DeBaud. 1999. PuLSE: A methodology to develop software product lines. Pages
122-131. the Fifth ACM SIGSOFT Symposinm on Software Reusability (SSR'99), Los
Angeles, CA, USA.

Borland. Borland Together Control Center 6.2.

Bosch, J. 1998. Product-Line Architectures in Industry: A Case Study. Pages 544 - 554.
the 21st International Conference on Software Engineering. IEEE Computer Society
Press, Los Angeles, California, United States.

—. 2000. Design and Use of Software Architectures: Adopting and Evolving a Product-line
Approach. Addison Wesley.

—. 2001. Software Product Lines: Organizational Alternatives. the 23rd International
Conference on Software Engineering.

CAFE. 2003. from http://www.esi.es/en/projects/cafe/ cafe.html.

Campbell, G. H,, Jr., S. R. Faulk, and D. M. Weiss. 1990. Introduction To Synthesis,
INTRO_SYNTHESIS_PROCESS-90019-N. Software Productivity Consortinm,
Herndon, VA, USA.

Clauss, M. 2001. Modeling variability with UML. GCSE 2007 - Young Researchers
Workshop.

Clements, P., and L. Northrop. 2002. Software Product 1 ines: Practices and Patterns. Addison-
Wesley, Boston, MA.

—. 2004. A Framework for Software Product Lines Practice.
http://www.sei.cmu.edu/productlines/framework.html

Cockburn, A. 1997. Structuring Use-Cases With Goals. Journal of Object-Oriented
Programming Sep/Oct: 35-40.

—. 2000. Writing Effective Use Cases. Addison-Wesley, Boston

Coriat, M., J. Jourdan, and F. Boisbourdin. 2000. The SPLIT Method. Pages 147-166. #he
First Software Product Lines Conference (SPLLCT), Denver, Colorado, USA.

Fantechi, A., S. Gnesi, G. Lami, and E. Nesti. 2004. A Methodology for the Derivation
and Verification of Use Casees for Product Lines. Pages 255-264. #be 3rd
International Conference, SPLLC 2004. Springer Verlag, Boston, MA, USA.

Gomaa, H. 2004. Designing Software Product Lines with UML.: From Use Cases to Pattern-based
Software Architectures. Addison Wesley Professional.

Griss, M. L. 2000. Implementating Product-Line Features with Component Reuse. #he 62
International Conference on Software Reuse. Springer-Verlag, Austria.

Griss, M. L., J. Favaro, and M. d. Alessandro. 1998. Integrating feature modeling with the
RSEB. Pages 76-85 in P. Devanbu and J. Poulin, eds. zhe 575 International Conference
on Software Reuse. IEEE Computer Society Press.

Halmans, G., and K. Pohl. 2003. Communicating the Variability of a Software-Product
Family to Customers. Journal of Software and Systems Modeling: Springer.

Jacobson, 1. 1992. Object-Oriented Software Engineering: A Use Case Driven Approach.
Addison-Wesley Professional.

Jacobson, 1., M. Griss, and P. Jonsson. 1997. Software Reuse: Architecture, Process and
Onganization for Business Success. Addison-Wesley Professional.

Jazayeri, M., A. Ran, and F. V. D. Linden. 2000. Soffware Architecture for Product Families:
Principles and Practice. Addison-Wesley Pub (Sd).

Kang, K., S. Cohen, J. Hess, W. Novak, and A. Peterson. 1990. Feature-Oriented
Domain Analysis (FODA) Feasibility Study. Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA.

Kang, K. C,, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh. 1998. FORM: a feature-
oriented reuse method with domain-specific architectures. ~Annals of Software
Engineering 5: 143-168.

Keepence, B., and M. Mannion. 1999. Using Patterns to Model Variability in Product
Families. IEEE Software 16: 102-108.

Krueger, C. W. 2001. Software Mass Customization.
http:/ /www.biglever.com/papers/BigleverMassCustomization.pdf.

Lawrence-Pfleeger, S., and S. Bohner. 1990. A Framework for Software Maintenance
Metrics. IEEE Conference on Software Maintenance.

Lee, K., K. C. Kang, W. Chae, and B.W. Choi. 2000. Feature-based Approach to Object-
Oriented Engineering of Applications for Reuse. Software-Practice and Experience
30: 1025-1046.

Linden, F. v. d., J. Bosch, E. Kamsties, K. K"ans"al"a, and H. Obbink. 2004. Software
Product Family Evaluation. Pages 110-129. zhe Third International Software Product
Line Conference, SPLLC 2004. Springer Boston, MA, USA.

Northrop, L. M. 2002. SEI's Software Product Line Tenets. IEEE Soffware 19: 32-40.

Ommering, R. v., F. v. d. Linden, and J. Kramer. 2000. The Koala component model for
consumer electronics software. IEEE Computer 33: 78-85.

Parnas, D. 1976. The Design and Development of Program Families. IEEE Transactions
on software engineering SE-2.

QADA. from http://www.vtt.fi/ele/research/soh/projects/families/qada.htm.

Redondo, R. P. D., M. L. Nores, J. J. P. Aris, A. F. Vilas, J. G. Duque, A. G. Solla, B. B.
Martinez, and M. R. Cabrer. 2004. Supporting Software Variability by Reusing
Generic Incomplete Models at the Requirements Specification Stage. Pages 1-10.
8th International Conference, ICSR 2004, Madrid, Spain.

Schmid, K., and M. Schank. 2000. PuLSE-BEAT -- A Decision Support Tool for
Scoping Product Lines. Pages 65-75. the International Workshop on Software
Architectures for Product Families. Springer-Verlag

Svahnberg, M., J. Gurp, and J. Bosch. 2001. On the Notion of Variability in Software
Product Lines. Pages 45-55. the Working IEEE /IFIP Conference on Software
Architecture WI1CSA 2001).

Szyperski, C. 1997. Component Software: Beyond Object-Oriented Programming. Addison-Wesley
Professional

Thiel, S., and A. Hein. 2002. Systematic Integration of Variability into Product Line
Architecture Design. Pages 130 - 153 the Second International Conference on Software
Product Lines (SPLLC2). Springer-Verlag.

Tracz, W., L. Coglianese, and P. Young. 1993. A domain-specific software architecture
engineering process outline. SIGSOFT Software Engineering Notes 18: 40-49.

UML. from http://www.uml.org.

Weiss, D. 1995. Software Synthesis: The FAST Process. zhe International Conference on
Computing in High Energy Physics (CHEP), Rio de Janeiro, Brazil.

—. 1998. Commonality Analysis: A Systematic Process for Defining Families. Second
International Workshop on Development and Evolution of Software Architectures for Product
Families.

Weiss, D., and C. T. R. Lai. 1999. Software Product-Line Engineering: A Family-Based Software
Development Process. Addison Wesley, Reading, MA.

Biography

Name Dr. Waraporn Jirapanthong

Education Background e PhD. in Computer Science, Software Engineering
Group, City University, London, UK.

e MSc. in Computer Science (Best Science Student

with the Highest GPA Award from Professor Taeb

Nilanithi Foundation, Thailand, 2001), Faculty of
Science, Mahidol University, Thailand.

e BSc. in Computer Science (First Class Honours),

Faculty of Science, Thammasat University, Thailand.

Employment Lecturer, Faculty of Information Technology,
Dhurakij Pundit University

	WJirapanthong_Cover
	WJirapanthong_Part I
	WJirapanthong_Part II and III

