CHAPTER 3

A JOINED POINT ESTIMATION IN
TOBIT-PIECEWISE REGRESSION MODEL

The TP regression model which was first introduced by Mekbunditkul, the
joined point was assumed to be fixed. It is quite simple to fix the joined point in TP
regression model if it is known in advance where(tis. Thus this research deals with
the more difficult case where the joined point has to be estimated from the data. Two
estimation methods are introduced to ‘investigate the joined point in TP regression
model in this research as describeddeelow.

3.1 The Maximum Likelihoed Fashign
In this section; the particular case that a single one regressor is
assumed to simplify. The‘combination, of the simple Tobit (2.1) and simple piecewise

(2.4) regression models to be the, TP regression model is shown in the model (3.1):

LI ’ Yi =L
Y=t T Li<Y;  <U; (3.1)
Ui Y, =

* * . *
where Y =y +B1Xj+BoXj +&j, the regressor variables are x; and X,
*

Xi =(xi —u)Di, v is an unknown joined point of two regression lines, and ¢;’s is

if x; <
id. N(O.Giz). Note o? =1 2 =" The locally lower and upper limits are
Cp if Xj>v

L, ;X< U ;X < . . .
L; :{ a =Y and U :{ a =" The probability density function
Lb ; Xj>v Ub ; Xj>v

(p.d.f.) of Y is determined by
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fy (vi) =<D[Li ~ 0P =P J It yi =L,

Oj

fy (i) =i¢[yi _al_B?Xi_BZXi j if Lj<yj<Uj,

i Gij

Oj

and fy (yj) = 1-@(”‘ ‘al‘lei‘BZXiJ if y;=U;.

Some notations are indicated for the derivation of joined point estimator as follows:

IaL ={| |Y|1 = Lll and Vi1 <v, i:l, . nal},

IbL {||Y|1 = Lil and Lj1 > L, i =1 .., nbl},

|aY ={i|Yi2 > Li2 and Vj2 <v, i =1, .
IbY ={| | Yi2 > Li2 and Lj2 > VL, i
lau ={ilYiz > Ujz and vj3
and IbU ={i|Yi3 > Li3 and 1 .., nb3}.
3
Note that n; = n§; - ; and nz =ny3 +npz. Inaddition,n= 3 nj.
j=1
The TP estim hieved by the ML method when the log-likelihood
function of 6 =(ay, ven Y for some fixed values of L,,L,U,, Uy, and 2

known, can be written as

In L(U;&l’ﬁl’ﬁZ’Y)= 3 {Inq)[l‘i _&1_[§1Xi B, ]}

i€||_ Gi

1 [yi —8q—Bxi —Boxi
+ In| — - 3.2
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. {m[l_q{ui —&1—?1Xi—ﬁ2X?D}_
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BZDid)( Li —&1—[}1Xi —ﬁzer

A ~ -~ Gj
oln L(U;OLl,Bl,Bz,Y): z — i S
L Cj
ny BgDi(yi —&1_lei_B2Xi) (3.3)
+
~2
i€|Y Gi
~ U_& _Ax._A X*
BZDid{ s gll & I]
+ S —
ey | & [1®(Ui — O @Prxi —Boxi D
Oj

Accordingly, the score statistic forv,/the function (3.3), is always positive and it

proves to be inappropriate the'traditional way to find the value of v which maximizes
In L(o;&l,ﬁl,ﬁz,y) by“differentiating In L(o;&l,ﬁl,ﬁz,y) with respect to v and

setting the derivation equal to'zero. Quandt (1958) suggested a procedure to calculate
the value of a switching point'(a special case of joined point) by selecting t which
gives the maximum-ikelihg@d tunction, where t is the time period. Nevertheless, the
assumption of Quandt™is without one joined point. By then, the estimate of a
switching point was just introduced in piecewise regression model. Subsequently,
Hudson (1966) suggested a parameter estimate based on the LS method and the joined
point is assumed. Thus, we can apply the procedure of Quandt by assuming the
joined point to find the value of v in TP regression model. This procedure can be
expressed as followed:

First, order the observation according to the value of x; and split the data into
two groups, i.e. left hand group and right hand group.

Second, determine the initial value of v with v as being in the range of X

and put v in the model (3.1).
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Third, estimate remaining parameters in the model (3.1) by @Tp as shown in
the equation (2.14) or (2.15).
Forth, substitute &1,31,{32 back to the log-likelihood function (3.2) and

calculate its value, after that move the point of v between the two groups by one unit
at a time to the right and one unit at a time to the left.
Fifth, calculate the log-likelihood function for each value of v and then

choose the value of v which maximizes the log-likelihood function. Then, the ML
estimators &1,l§1,f32 are obtained.

In sum, this way can be generalized to the‘case that multiple linear regressions

are taken into consideration.
3.2 The Nonlinear Least Square_Eashion

The Tobit-piecewise regressionimodel can be considered as one of nonlinear
regression models evident in thexfigure 1.2 thus in the case that the data should truly
be fitted by nonlinear-regression“medels rather than linear models some nonlinear
least square solving based have beentrecommended. A nonlinear regression model
(Seber and Wild;»1988: 21) canjbe written as

Y, :f(gi;Q*)+si, (3.4)

where i=1, 2,..., n, f()gi;Q*) is a known regression function as defined in the

equation (3.1), x; is a k x 1 vector, Q* is a vector of k unknown parameters and the
E(ej)=0. The true value 0 of © is known to belong to ©®, a subset of p-dim
Euclidian space SRP. From these statements, we can state that the i"" element, Yi* , of
Y*as shown in the model (2.15) can be served as the model (3.4). The least square

estimate of Q*, denoted by @ minimizes the error sum of squares. Thus, we can state

the definition of nonlinear least square (NLS) estimator by the following definition.
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Definition 1. The nonlinear least square (NLS) estimator for the nonlinear regression
model (3.4) is defined by

2
n
oNS = argmind Yi—\?i(Q*))
0" enP i=1
N 2
= argminZ(Yi—f(;(i;Q*)) :
0 eRP i=1

Unlike the linear least square estimator, t Iytical solution of this solving

. * . .
for a general function f(gi;Q ) can no . Taylor’s series expansion

ve function because the

(3.5)

(3.6)

...,f(gn;Q))'

ad  F(x0)= 2 5i19) ZH% ()Si;Q)ﬂ, 37)

where F.(x;;0) represents the first derivative.

Rewrite the equation (3.5) as
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8(0) =]y -f(xi:0)"- (38)

n of (x;:0

> (Yi-f(xi:9)) (xi:0) =0,r=1,2,...,p, (3.9)

i=1 O op
or

0-E(x-r{xil)

=F2 (3.10)

This is called the normal ild, 1988: 22) for the
nonlinear model. The numerig ewton method, steepest
descent method and Leven method as described in the section 2.5, are
utilized to find the value o e the most nonlinear estimators of nonlinear
model can not In this research, only Levenberg-Marquardt

method is pre





