CHAPTER 2

THEORY

2.1 Outliers

According to Barnett, V. et al.(1994) (access by http://en.wikipedia.org), an
outlier in the sense of statistics is an observation that is numerically distant from the
rest of the data. They can occur by chance in any distribution, but they are often
indicative either of measurement error or that“the, population has a heavy-tailed
distribution. In the former case one wishes to discard them or use statistics that are
robust to outliers, while in the latter case they indicate thatithe distribution has high
kurtosis and that one should be verweautious in using tool/or intuitions that assume a
normal distribution. Outliersg¢being the most extremerobservations, will include the
sample maximum or sarmiple, minimum, or both, depending on whether they are
extremely high or low. Howewverfthe sample maximum and minimum need not be
outliers if they aré mot unusually far from other observations. This definition is similar
to others suehas Montgomery, et al:'®(1982), Moore, et al.(1999), Monhor, D. et
al.(2005) and Walfish, S. (2005), etc.

Outliers in thisyresearch are considered in the sense of regression outliers.
They are the observed data that are distinct from the linear relationship representing
most of the data and they can draw a regression line away from the usual data.
Nevertheless, they exclude unusual incidents of outliers. Moreover, types of
regression outliers (Rousseeuw and Zomeren, 1990: 633) studied in this research are

as below:
1) y-direction outliers

These are points that are outliers only because they are extreme y-
coordinates. The extent to which such outliers will affect the parameter is estimated
depending on both their x-coordinate and the general configuration of other points.
Thus, those points could also be a regression outliers or residual outliers.



2) x-direction outliers

These are points that deviate only with regard to the x-coordinates. Such
points can cause some regression estimates to perform poorly. The x-direction outliers

could also be regression or residual outliers.
3) xy-direction outliers

These are points outlying in both x- and y- coordinates. It may be a

regression outliers or residual outliers (Ryan, 1997: 350).

Classical estimate such as the sample mean, variance, covariance and
correlation, or the LS fit of a regression model, can*ewery adversely influenced by
outliers, even by a single one, and oftényfail to provide“good fits to the bulk of the
data. An alternative approach such_as robustyapproach has been introduced to cope
with outliers’ problem in ordegto provideia good fit,forthe bulk of the data containing
outliers, as well as when the data are free of them. Nevertheless, robust approach is

quite complicate.

2.2 LS Regression

The second topic togbe studied is the regression analysis which is well
concluded by Ampantheng (2009: 10-12). Accordingly, regression analysis is a
statistical tool for modeling and analyzing several variables which underlie vital
assumptions. To estimate the unknown parameters in a regression model is among the
most significant objectives of regression analysis. This process is also called “fitting

the data to the model”. According to Gauss-Markov theorem, the maximum

likelihood estimate of ©=(o,B;,B,,...) turns out to be the BLUE of . One
usually tries to estimate the unknown parameters in a regression model from a data set

by the LS method to obtain § = (X'X)_l(X’Y). When the method is applied to acquire

the estimates éj of0;, for j=1, 2,... , k, those so found are called LS estimates of the

regression coefficients. The fitted regression equation concluded from the data set is

¥, = &+ Xpgy + XioBy + .+ X By fOri=1, 2, ..., n,



This equation is regarded as the estimate of the regression model Y =x;0,
where X; = (X3, Xz, X ), iI=1, 2, ..., n. The residual r; is defined as the difference
between the observed value y;and the fitted value y;, i.e. r, =y; — ;. The method of

obtaining the LS of éj , for each j=1, 2,..., p is the most popular estimate method. The

LS estimator that minimizes the sum of squared residuals, i.e. ﬁl, [32, f&k will have
n n 2
Min > r?=Min> (y;—¥;)". Nevertheless, LS estimator is not suitable when the
L) 9 i

distribution of their residuals is not normal. In some case, when data have a heavy tail
in any direction due to the presence of outliers, LSimethod of estimate might not be
preferable. While in other cases, data may have only a'small fraction of outliers, but
LS estimate is still not suitable for further analysis. A small fraction of outliers may

have a large effect on the LS estirhator.

2.3 Two-Limit Tobit Model

The tweslimit Tobittmedel (Tokin, 1958) is the simplest model for censored
data. Here,“we stimulate the \discussion using an example based on Tobin’s
application of the model. Let/a dependent variable be the monthly expenditure on
luxury goods of eachhyhouSehold and let an independent variable or explanatory
variable be such as the"monthly income for the corresponding the household’s

monthly expenditure. The parameters vector 6, which contains the set of population

regression parameters related to the variables, need to be estimated. In this example,

link variable or Yi* might be the capacity of households to spend their income on

luxury goods, but this is only realized as actual expenditure, Y; , if that expenditure
exceeds zero. Thus, even if many observations might have value to be zero on the
Y; , they can be considered as having changing values on the link variable Yi*. The
two-limit Tobit model (Tobin, 1958: 26 , Rosett, 1975: 141 and Joreskog, 2002: 13)

can be written as the dependent variable Y; satisfies
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*

L .Y, <L
Y, ={Y! L L<Y; <U (2.1)
U .Y, 2U,

where Yi*, for 1=1,2,...,n, is the link function generated by the linear regression

model
Yi = o+ ByXy A ByXi + &,

where X;,X5,...,X) are regressors, and ¢g; ’s are the @sror terms having independent
normal distributions with zero mean andjeonstant variance (ai ~ i.i.d.N(O,GZ)) and

are independent of x;. L and dJin‘the, model(2.1) aredan lower and upper limits,

respectively.
The probability density function (p.d.f.) of Y for given values of each L and U

is determined by fY(Yi)=q)[L_>Sin if Yi=L;, fy( ) :—4)[ i x6] if
Gj

Oj
* _ Ui —xi0 | -
Yi=Yi, and fy())= 1-® == if Yj=U;. Where ® and ¢ are the
1

cumulative distribution“function (c.d.f.) and the p.d.f. of a standard normal
distribution, respectively. From the p.d.f. of Y, we then get the log-likelihood function
and by the ML fashion, the Tobit estimator was constructed. Actually, LS fashion
might be inappropriate in the case that the dependent variable is limited by some
desired variable. As the mention of Greene (1981: 505-513) who described that the
LS estimator of parameter vector in Tobit model is the bias and also the asymptotic
bias of the regression coefficients, this means that the LS based for the limited

dependent variable case is inconsistent.
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2.4 Piecewise Regression Model

In this research, the structural change in the regression model is taken into
account, thus the piecewise regression model (Quandt, 1958: 874, Hudson, 1966:
1097-1129, Goldfeld, Kelejian and Quandt, 1971, Suits, Mason and Chan 1978: 132-
133) is considered. Quandt first introduced that economic variables may sometimes be
fitted by linear relations with the property that the parameters of the relationship are
subject to discontinuous changes. For example, consider the consumption

functionY = aX+p. Aggregate consumption depends upon the level of aggregated

income. In addition, it may be hypothesized that“eonsumption depends non-linearly
on other factors such as the state of expectations“c€oncerning the future of the
economy, the volume of installment buying, the level of the interest rate, etc. These
other variables may have the effectnof altering the parameters of the consumption
function in the following fashion: when the critical'@utside variable i satisfies i < i*

then Y = oy X+, and when, i > i%fthen Y = a,X+B,, where i* is the critical

level of the outside vakiable in“question. In general, one may not be able to identify
the critical outside variablesand one“may not be able to state at what time the system

Y = aX+f changes from one regime to the other. In the paper of Quandt, there was

indicated an estimating procedure for the switching point under the conditions when it
is known that the time jp€riod under consideration contains a single switching.
Parameters in the piecewiSe regression model were estimated by the ML method.
Subsequently, Hudson (1966: 1097-1129) discussed a similar estimate
problem in which the two regression regimes are required to be intersected, see
example on figure 2.1. Parameters estimate based on the LS method and the models

were assumed to be joined at the value X .
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(b) Model (2.14b).

Figure 2.1 Two possible types of the Piecewise Regression Model
Source: Tishler and Zang, 1981: 117.
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Two regression regimes joined at point v (Hudson, 1966) can be represented

by
v {a1+B1Xi +&j ; Xj <V 2.2)
(12+[32Xi+8i ; Xj >V
where Y; is a dependent variable, x; is a corresponding independent variable, and

error terms, ¢;’s are assumed to be normally and independently distributed with mean

2

zero and variance c“ and are independent of the independent variable. In addition,

the model (2.2) is subject to oy +pv =09 +Bov n be written as

0 + BX; + €
= 1 Bl i i (2.3)
o +ByXj +(B2 =By
Suits et al. (1978: 132-138) extended .3) SO that it can be written in the
multiple regression model d y variable, D;, consisting of two independent
variables as follg
Y= a ‘ (24)

where X; =(xj—v)D
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2.5 Methods for Finding the Minimum of the Sum of Squares

This research is related to solve nonlinear least square problem.
Therefore, there are three methods introduced to find the minimum of sum of
squares for that problem. Nonlinear least square problems occur for instance in
nonlinear regression namely piecewise and TP regression as considered in this

study.
2.5.1 Gauss-Newton Method
The Gauss-Newton approximation (Seber and Wild, 1988: 25) is

described as the followings. Suppose Q(a) IS an@pproximation to the LS estimator é

of a nonlinear model. By the Taylor’s expansion, we will,get

f(x:0) = ;o2 jmeld) (0%0l)). (25)

(2)

=
=
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. It canibefapplied to the residual vector, r(X;0), as

From the equation S(9)=_(Y; —f(x;;0)) ., we will get
i1

-t st ) )

+(Q—Q(a))' F(a), F(a) (Q—Q(a)) (2.6)

Thus, we can conclude that the right hand side of the approximation (2.6) is

minimized with respect to 6 when
U _1 U
0o :(F(a) F(a)} @) r(X;Qm))

_5@). 2.7)
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This equation gives the approximation of Q(a) then we can say that the next

approximation is followed by

o(2+1) _g(@) 4 §@). 2.8)

The equations (2.7) and (2.8) determine the updating result and the @ can be attained
by the equation (2.8). In addition, Seber and Wild (1988) mentioned that the Gauss-

Newton algorithm is convergent.

2.5.2 Steepest Descent Method
The steepest descentsmethod s also known as the gradient descent. It is
based on the gradient of ¢'c . 4Seber and Wild (1988%594) described the theory of this

method as the followings:“The steepest descent method is one of iterative processes

where an initial guess Q(l) is furmished, from which the algorithm sequentially moves

in %P of poinis 9(2) 9(3),... which“are aimed to converge to a local minimum (:3

Practically usefulyis this algorithm method to make sure that h(@), a real-valued
function of p parametersyvector 0 = (61,62,...,6p)’ , is reduced at each iteration so that

h((j(a+1))<h(@(a)). In this research the function h(8) is defined as

2
n
8(0)=2_(Yi—f(xi:9)) -
i=1
The approximation of the (a+1)™ iterative is the same as (2.8) nevertheless the
updating §<a), the computation of the a™ step, is differently defined as

5(8) = p(@)g(a) (2.9)
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where the vector g(a) is called the direction of the step and p(a) is the step length.

Frequently p(a) is selected to approximately minimize S(Q) along the line

Q(a) +p§(a), this process known as a line search. If the p(a) Is the exact minimum at
each iteration, then the algorithm is said to have exact line searches; otherwise, it
employs approximate line searches. Whenever there exists the convergent of S(Q) to
the local minimum, this means that the exact line searches are not manipulated and

S(Q) is sufficiently reduced at each iteration (Gill, 1991: 100). A descent direction

d® can be determined by

as(g(a) i pg)
g@d - 1 <0 (2.10)
= ~ ap
p=0
By the Taylor expansion, we get
S(Q(a) ; pg) ~ s( Q(a))+ pgl®kg + O(pz). 2.11)

Thus, when the appreximation (2.11) attains, the decrease in function S(Q(a)) can be

obtained by the small ‘epough step pin the directiond. The important theorem is

stated in order to know “how descent directions can be calculated?” as followed.

Theorem 1 A direction d is a descent direction at parameters vector 0 if and only if

there exists a positive definite matrix R such that
d=-Rg.

Proof . It is available on Nonlinear Regression (Seber and Wild, 1988: 595).

Therefore from equations (2.8) and (2.9), we can state that

_o@) _p(a)R(a)g(a)_ (2.12)
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Where the choice of Ris R =1, the descent direction becomes to d = —g(a) and this

is called the steepest descent direction. However, the direction of steepest descent

depends entirely upon the scaling of 0.

2.5.3 Levenberg-Marquardt Method (Seber and Wild, 1988)

This method is a compromise between the Gauss-Newton and steepest

descent methods. As d — 0, the direction approaches Gauss-Newton. As d — «o, the

direction approaches steepest descent. Levenberg-Marquardt method is equivalent to
performing a series of ridge regressions and is useful when the parameter estimates
are highly correlated or the objective function is<net well approximated by a

quadratic.

Let a model be fitted tntothe datathere isdikely the function f (gi ; Q*)
as expressed in the model Yj =f (gi;(j*)+si , The problem is to compute the estimates

of parameters which will \minimize S(Q):H\N/—f(gi;g)uz. By utilizing ideas of

Levenberg together with Marquardt (1963), thus the Levenberg-Marquardt algorithm
adaptively varies the parameter updates between the gradient descent and Gauss-
Newton update (Seberand Wild, 1988)

’ _1 ’
5@ =_(,4a> @) +n<a)D<a>j @) r(x;Q<a>), (2.13)

where D(a) is a diagonal matrix with positive diagonal element frequently defined to
be the same as F®) F?) and n(®) is the a step direction. When D(®) is I, and
n(a) — 0, the direction approaches Guass-Newton. Whereas, n(a) — oo, the direction

approaches steepest descent. In the case that n(®) >0 then F&) F&) 1 n(®)p@) s

positive definite, as D(a) is positive definite. Thus the updating function §(a) as in

(2.13) and by the Theorem 1, is a descent direction. And in the case that
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n(a) — o then §(a) tend to zero. Therefore if we select very large n(a) then we can

so fast reduce the function S(9) =Y —f ()Si;Q)HZ' Nevertheless, for many iterations

n(a) which are too large, the algorithm adapt with little progress.

Marquardt’s finding indicates that the average angle between Gauss-
Newton and steepest descent directions is about 90 degree. A choice of initial value of

the direction n(o) for this research is n(o) =102 used to start and compute the

updating vector §(a). If S(Q(a)+§(a))<s((§(a)), then n becomes % for the next

iteration. Otherwise S(Q(a) +§(a)) >S(Q(a)) , then 1 1§ 20n for the next iteration.kk

2.6 TP Regression Model

There was first interested the combination of two principal ideas, i.e. Tobit
and piecewise regression, Where each, has a different benefit as described before. And
there were not'any literatures which applied these two ideas to cope with the outliers
problem untilfMekbunditkul (2010) first introduced the TP (abbreviated from Tobit-
piecewise) regression, as thedderivation of the TP regression model and the log-

likelihood function of ‘@ deseribed below:

According to the two-limit Tobit model (2.1) and by assuming that there exists
the structural change in regression parameter, the piecewise multiple linear regression
(Quandt, 1958: 874, Hudson, 1966: 1097-1129, Goldfeld and Quandt, 1971, Suits et

al. 1978: 132-133) is utilized. The link function as mentioned in the model (2.1), Yi*

can be broken into two regression regimes as

(2.14)

* _{Ot1+l311Xi1+B12Xi2 +o+HBuXik tei 5 if v <,
oty +Bo1Xip +Bo2Xip +.+PokXik te 5 if v >,

:th

where Y, is a dependent variable, Xijj represents the i observation of the j

independent variable, for j=1, ...,k and i=1, ..., n. In addition, v; =X%;3 (Quandt,
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1972: 307), where x; is the row vector with k variables of the i observation and 9 is
a k-dim vector of unknown parameters. The errors ¢;’s are N(O,ciz). Suppose

X0 =(Xog,---Xok ) is @ vector of regressors at a joined point, i.e., Xo9 =v, then, from

k k k
model (25), Otl—l-ZBleOj =02 +ZB2J'XOJ' , i.e., 0o = 0(1—2([32] _Blj)XOj'
=1 =1 =1
For vu; > v,
. k k k
Yi :al+ZBleij+Z(BZj‘B1j)Xij_ Xoj+ &
==t i

(2.15)
L; CY <L
Y, =Y S Li<Y; <U;
U, .Y 22U,
where Yi = OLl+ZB1inj +ZszXijDi +B3Di +&j. In addition, this model can be
=1 =1

written in the matrix form as

Y=X0+g, (2.16)



20

where

Y=[L!

L

1o 17
12 UB]nxl’

'
1

=|:L11 L21 Lnll: Y12 Y22 Yn22: U13 U23 Un33:|,

Y, =Y, and Qz(ocl,ﬁll, coor Bis Bags oo sz,[?;;) and X is defined as in the

equation (2.9). Moreover, the limits L and U are defined by

La
Lim = (2.17)
Lb
The vector Y* can be described as below nerality (WLOG), all of
the observed data Y;’s a ich Y; corresponds, for
i=1, ..., n are rearranged. F servation vector Y* consists of three parts. One
of them is obseryvg i 3 smaller than the lower limit L. The second
comprises of limit (L,U) and the third indicates values
greater than 0 be specific, suppose that the observation in each
partare ny, n,
Y* :|: *! i * i ! :|’ ’
Y 1t 18y
=[Y11 Y21 Y1t Y12 Y22 Yn,2 + Y13 Y23 Yn33J

51010
= 0 z 0|, where Zm= diag(clm...cnmm) and
0! 0 i3,
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2 .
oy If vy, <V, )
Gizmz a m ,m=1,23;i=1 .., np,.

ctz) if Vi, >V

St 010
Therefore, the inverse matrix of £ is =2=| 0 331! 0
0: 0 ix3t
. . . 1 . 1 1
Since Z,,, are diagonal matrices, so X, = diag ,Wherem=1, 2, 3.
Snpm

.- . 2
In addition, it is assumed that &, ~ N(O,cim).

The matrix of X indepen

Y=L Y5 Us] s

1 Xq11

(2.9)

- nx(2k+2)



22

1 ;vim>v,

where xﬁm = XijmDim+ Xim =Dijm and Djn ={ where m=1, 2, 3;

0 ;Vjm <v,
=1, ..., k;i=1, ..., nn, and k is the number of regressor variables. Note that 2k+2 is

less than n.

2.7 TP Estimator

The log-likelihood function of 6 in TP regression model was derived by

Mekbunditkul (2011) via the p.d.f. of Y;,, the im™ element of vector Y . The p.d.f.

of &j, is assumed to be normal with zero mean an variance and it is independent

from each other. When given the values ; ; ri=1 ..

m=1, 2 and 3, the p.d.f. of Y w, i the followings.

Part 1. For Yj =L;

inl

=P(xyf%ex < Ly),

_p (i < M]
Gi1 Gi1

q)(l—il_)filg}
Gij1

Part 2. For Ljp <Yjo <Ujp, where i=1 .., ny:

P(Li2 <Yj, < Uiz) = P(Liz <Xi20+&iz SY?z):



23

Gi2 Gi2 Gi2

:Q(MJ_ q)[l—iZ —Z(izQJ_
Gi2 Gi2

Hence, fY_2 (yi2)= 1 ¢(Yi2—>~<i29J: 1 ¢[Yi2_)~(i29}where Viz € (Liz, Uip).
2

_ P(Liz—lizg < iz YTz—Z(iz(ﬂj

Part 3. For Yj3 = Uj3, where i =1, ..., n3:

P(Yis = Ui3) = P()~(i39+8‘3 z U‘3)’

Functions ® a and p.d.f. of a standard normal distribution,

respectively

Some notatio

IL :{l | Yi1: Lil’ i:]., very nl},

dicated to be used in the next part as

IY ={i|Li2<Yi2<Ui2,i=1, —y No },and

Iy ={i|Yi3=Ui3, i=1 .., ng }

From the independent property of each element in the vector Y, the p.d.f. of Y can

be expressed as
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exp {—;(Yz - XzQ)l P (Yz - Xz@)}

(2 n2/2|2 |n2/2

Oi1

fy(y)= I q)( '—ir?SuQJ,

T11- q{ i3~ XBOJ (2.19)

IEIU GIS

Thus, the log-likelihood function is thus given by

InL(g;Y)= 3 In cp(x,l) 21, Zn—%ln 22l ng) zgl(yz —XZQ)
I€||_

(2.20)

where Xj =

The can be obtained straightforwardly from the log-

likelihood equation (2. ich consists of three parts, as

From Mekbunditkul (2010), @Tp was verified as in the form of
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~ -1 ~ ~
7o = (X522, ) | X2 by (i )]+ (X5231Ys )+ X523 2 s (1)}

1 1 .
=(X'2251X2) (X'zzile)—(X'zﬁilxz) [X'lzl_llz{lﬂl(f )}}

(xazixa) [ Xa2z? (o )]

where H; x)=(h 71—11 h(%; 1 . d)(i_ll) ¢(A_nll) 2.21
(7 )=(n(F) -~ nlEas)) o(n)  @(ing) | @.21)

and Hy(i)= (h(Ags) - h(Rn.a)) = UES L NI | 2.22
~3( ) ( ( ) ( n3 )) 1_®(7113) 1_(1)(71”33) - (222)

where i‘nll and ii3 are estimators'of A, 1 andha;s, respectively.

There exist three parts of, TRéestimator which the first part is the LS estimator
based on n, observationSpwhere“values are not at the limits. The other two parts
concern n; and n3 observationsywhose values are truncated respectively by the lower

and upper desired limits.
2.8 Properties of TR Estimator

In Mekbunditkul’s dissertation, there were verified some properties of TP
estimator in terms of its bias and mean square error (MSE). Two situations were
defined: (1) U—>w and L is finite, (2) L—>-o and U is finite. Some

vectors/matrices such as Y, X, L and U and X were defined as in section (2.4) and

the following statements were indicated to refer throughout this section

C1: Assuming that U — oo and L is finite, the response variable Y in TP regression

) L
model isas Y = [.:}] , Where n=nq+n5.
nx1

Y,
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C2: Assuming that L — —co and U is finite, the response variable Y in TP regression

_ Y.
model isas Y = 2 , where n=n, +ng.
Us
~91nx1

The TP estimator, éTp corresponding respectively to each of C1 and C2 is

re =(xomaxa) (XmaYe - (e i (R))]. @29

. 1 1 .
O1p (X'22§1X2) (X'2251Y2)+(X'22§1X2) {X§2§1/2{|:|3(7L)}}7 (2.24)

where Ijl(i) and Hg(i) are in the forms of equations, (2.23) and (2.24).

Theorem 2. Assume Cl1, éTp, asgdefinediin, equation (2.23), is biased where the

bounds of the bias are (Mekbunditkul, 2010)

_ _ -1
Bias, =—Aq (1+A;) 1@—{I—A1(|+A1) 1}(X'2251x2) X'lzl‘l’z(l—zl‘l’zlﬂ),

-1
Bias, ={|—A1(| +A1)‘1}9-{|—A1(| +A1)‘1}(X'2251x2)
(XaBa'L o - Xiz g + X525 2).

Proof. It is availableiimMekbunditkul’s dissertation.

Theorem 3. Assume C1 holds. The asymptotic variance-covariance matrix of E)Tp ,

as defined in (2.23), is (Mekbunditkul, 2010)

-1

-1
(x’\/\/x) :{(xl'w1 x1)+(X2’W2X2)} , Where Wy =Gl(7C )21_1 and

W, =35,

Proof. It is available in Mekbunditkul’s dissertation.

Theorem 4. If C2 holds, the estimator @TP , as defined in equation (2.24), is biased

where the bounds of the bias are (Mekbunditkul, 2010)
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Bias, :{l—AZ(I+A2)_1}Q_{I—A2(|+A2)_1}

1yl -1 r -1 r -1
{( 222 Xz) ( 323 Uz — X%, Uy —X5%%; l)}
: N[ (yrs1y \Hro1/2 -1
Buasuz{l—Az(HAz) }(xzz2 x2) {x323 (ug+1)} —A,(1+A,) M.

Proof. It is available in Mekbunditkul’s dissertation.

Theorem 5. Assume C2 holds. The asymptotic vakiance-covariance matrix of (:9Tp ,

as defined in (2.24), is (Mekbunditkul, 2010)

kbunditkul, 2010)

2
i J ,  Where j=a,b,

~ (\:(jl - L—jl)' (\:(jl - L—jl) ( Yi2 —\A!jz)' (sz _?jZ) |
nj2 nj2

Proof. It is available in Mekbunditkul’s dissertation.
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Theorem 7. Let C2 hold, then ML estimators of each cg and c% in the TP regression

model are obtained by (Mekbunditkul, 2010)

2
R /1 .
maX(pJZ,rj)<cjz<(qj+ quz+2er , Where j=a,b,
pj=0ifqj- ‘/ qJ+2r <0 and pj=q;j- ‘/ qJ+2r otherwise,

l(U Yjs) and rj=
njz nj2

Qj=—""—""

Whenever the same sample size ed then an estimate of

variance ch is as their poole decor and Cochran, 1989

2 . -2 _Ga+6h ~2
and Welch, 1947). That is ator of o%p is 65p =—2 5 , Where &3
and o cb as sho






