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CHAPTER 2 

 
THEORY 

 

2.1 Outliers 

According to Barnett, V. et al.(1994) (access by http://en.wikipedia.org), an 

outlier in the sense of statistics is an observation that is numerically distant from the 

rest of the data. They can occur by chance in any distribution, but they are often 

indicative either of measurement error or that the population has a heavy-tailed 

distribution. In the former case one wishes to discard them or use statistics that are 

robust to outliers, while in the latter case they indicate that the distribution has high 

kurtosis and that one should be very cautious in using tool or intuitions that assume a 

normal distribution.  Outliers, being the most extreme observations, will include the 

sample maximum or sample minimum, or both, depending on whether they are 

extremely high or low.  However, the sample maximum and minimum need not be 

outliers if they are not unusually far from other observations. This definition is similar 

to others such as Montgomery, et al. (1982), Moore, et al.(1999), Monhor, D. et 

al.(2005) and Walfish, S. (2005), etc. 

 Outliers in this research are considered in the sense of regression outliers. 

They are the observed data that are distinct from the linear relationship representing 

most of the data and they can draw a regression line away from the usual data. 

Nevertheless, they exclude unusual incidents of outliers. Moreover, types of 

regression outliers (Rousseeuw and Zomeren, 1990: 633) studied in this research are 

as below: 

1) y-direction outliers 

These are points that are outliers only because they are extreme y-

coordinates. The extent to which such outliers will affect the parameter is estimated 

depending on both their x-coordinate and the general configuration of other points. 

Thus, those points could also be a regression outliers or residual outliers. 
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2) x-direction outliers 

These are points that deviate only with regard to the x-coordinates. Such 

points can cause some regression estimates to perform poorly. The x-direction outliers 

could also be regression or residual outliers.  

3) xy-direction outliers 

These are points outlying in both x- and y- coordinates. It may be a 

regression outliers or residual outliers (Ryan, 1997: 350).  

  

Classical estimate such as the sample mean, variance, covariance and 

correlation, or the LS fit of a regression model, can be very adversely influenced by 

outliers, even by a single one, and often fail to provide good fits to the bulk of the 

data. An alternative approach such as robust approach has been introduced to cope 

with outliers’ problem in order to provide a good fit for the bulk of the data containing 

outliers, as well as when the data are free of them. Nevertheless, robust approach is 

quite complicate. 

 

2.2 LS Regression 

The second topic to be studied is the regression analysis which is well 

concluded by Ampanthong (2009: 10-12). Accordingly, regression analysis is a 

statistical tool for modeling and analyzing several variables which underlie vital 

assumptions. To estimate the unknown parameters in a regression model is among the 

most significant objectives of regression analysis. This process is also called “fitting 

the data to the model”. According to Gauss-Markov theorem, the maximum 

likelihood estimate of ( )1 2 kθ = α β β β
�

, , ,...,  turns out to be the BLUE of θ
�

. One 

usually tries to estimate the unknown parameters in a regression model from a data set 

by the LS method to obtain ( ) ( )1ˆ X X X Y−′ ′θ =
��

. When the method is applied to acquire 

the estimates jθ̂  of jθ , for j=1, 2,… , k, those so found are called LS estimates of the 

regression coefficients. The fitted regression equation concluded from the data set is 

i i1 1 i2 2 ik k
ˆ ˆ ˆˆŷ x x ... x= α + β + β + + β  for i=1, 2, …, n.  
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 This equation is regarded as the estimate of the regression model iY x= θ
� � �

, 

where ( )i i1 i2 ikx x x x=
�

, ,..., , i=1, 2, …, n. The residual ir  is defined as the difference 

between the observed value iy and the fitted value iŷ , i.e. i i iˆr y y= − . The method of 

obtaining the LS of jθ̂ , for each j=1, 2,…, p is the most popular estimate method. The 

LS estimator that minimizes the sum of squared residuals, i.e. 1 2 k
ˆ ˆ ˆ,  ,  ...,  β β β  will have 

( )
n n

22
i i iˆ ˆ

i 1 i 1
ˆMin r Min y y

θ θ= =

= −∑ ∑
� �

.  Nevertheless, LS estimator is not suitable when the 

distribution of their residuals is not normal. In some case, when data have a heavy tail 

in any direction due to the presence of outliers, LS method of estimate might not be 

preferable. While in other cases, data may have only a small fraction of outliers, but 

LS estimate is still not suitable for further analysis. A small fraction of outliers may 

have a large effect on the LS estimator. 

 

2.3 Two-Limit Tobit Model 

The two-limit Tobit model (Tobin, 1958) is the simplest model for censored 

data. Here, we stimulate the discussion using an example based on Tobin’s 

application of the model. Let a dependent variable be the monthly expenditure on 

luxury goods of each household and let an independent variable or explanatory 

variable be such as the monthly income for the corresponding the household’s 

monthly expenditure. The parameters vector θ
�

, which contains the set of population 

regression parameters related to the variables, need to be estimated. In this example, 

link variable or iY* might be the capacity of households to spend their income on 

luxury goods, but this is only realized as actual expenditure, iY , if that expenditure 

exceeds zero. Thus, even if many observations might have value to be zero on the 

iY , they can be considered as having changing values on the link variable iY* . The 

two-limit Tobit model (Tobin, 1958: 26 , Rosett, 1975: 141 and Jöreskog, 2002: 13) 

can be written as the dependent variable iY  satisfies 
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i

i i i

i

L            ;        Y L          

Y Y          ;  L< Y U          

U          ;        Y U          

⎧ ≤
⎪⎪= <⎨
⎪

≥⎪⎩

*

* *

* ,

                       (2.1) 

 

where iY* , for i 1 2 n, ,...,= , is the link function generated by the linear regression 

model  

i 1 i1 k ik iY x x= α +β + +β + ε* ... ,            

where 1 2 kx x x, ,...,  are regressors, and iε ’s are the error terms having independent 

normal distributions with zero mean and constant variance ( )( )2
i i i d N 0ε σ~ . . . ,  and 

are independent of ix
�

. L  and U in the model (2.1) are an lower and upper limits, 

respectively. 

The probability density function (p.d.f.) of Y for given values of each L and U 

is determined by ( )Y if Y i

i

L x⎛ ⎞− θ
= Φ⎜ ⎟σ⎝ ⎠

� �   if  i iY L= , ( )Y if Y  i i

i i

1 Y x⎛ ⎞− θ
= φ⎜ ⎟⎜ ⎟σ σ⎝ ⎠

� �  if 

i iY Y= * , and ( )Y if Y = i i

i

U x1
⎛ ⎞− θ

−Φ⎜ ⎟⎜ ⎟σ⎝ ⎠
� �  if  i iY U= . Where Φ  and φ  are the 

cumulative distribution function (c.d.f.) and the p.d.f. of a standard normal 

distribution, respectively. From the p.d.f. of Y, we then get the log-likelihood function 

and by the ML fashion, the Tobit estimator was constructed.  Actually, LS fashion 

might be inappropriate in the case that the dependent variable is limited by some 

desired variable. As the mention of Greene (1981: 505-513) who described that the 

LS estimator of parameter vector in Tobit model is the bias and also the asymptotic 

bias of the regression coefficients, this means that the LS based for the limited 

dependent variable case is inconsistent.   
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2.4 Piecewise Regression Model 

 

 In this research, the structural change in the regression model is taken into 

account, thus the piecewise regression model (Quandt, 1958: 874, Hudson, 1966: 

1097-1129, Goldfeld, Kelejian and Quandt, 1971, Suits, Mason and Chan 1978: 132-

133) is considered. Quandt first introduced that economic variables may sometimes be 

fitted by linear relations with the property that the parameters of the relationship are 

subject to discontinuous changes. For example, consider the consumption 

function Y  X= α +β . Aggregate consumption depends upon the level of aggregated 

income. In addition, it may be hypothesized that consumption depends non-linearly 

on other factors such as the state of expectations concerning the future of the 

economy, the volume of installment buying, the level of the interest rate, etc. These 

other variables may have the effect of altering the parameters of the consumption 

function in the following fashion: when the critical outside variable i satisfies  i < i*  

then 1 1Y  X= α +β  and when i ≥  i* then 2 2Y  X= α +β , where i* is the critical 

level of the outside variable in question.  In general, one may not be able to identify 

the critical outside variable and one may not be able to state at what time the system 

Y  X= α +β  changes from one regime to the other. In the paper of Quandt, there was 

indicated an estimating procedure for the switching point under the conditions when it 

is known that the time period under consideration contains a single switching. 

Parameters in the piecewise regression model were estimated by the ML method. 

 Subsequently, Hudson (1966: 1097-1129) discussed a similar estimate 

problem in which the two regression regimes are required to be intersected, see 

example on figure 2.1. Parameters estimate based on the LS method and the models 

were assumed to be joined at the value 0x ..  
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               (a)   Model (2.14a).   

           

(b)  Model (2.14b). 

 

Figure 2.1  Two possible types of the Piecewise Regression Model 

Source:  Tishler and Zang, 1981: 117. 
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Two regression regimes joined at point υ  (Hudson, 1966) can be represented 

by 

 1 1 i i i
i

2 2 i i i

x                 ;  x  
Y

x               ;  x
α +β + ε ≤ υ⎧

= ⎨α +β + ε > υ⎩
            (2.2) 

where iY  is a dependent variable, ix  is a corresponding independent variable, and 

error terms, iε ’s are assumed to be normally and independently distributed with mean 

zero and variance 2σ  and are independent of the independent variable.  In addition, 

the model (2.2) is subject to 1 1 2 2α +β υ = α +β υ  and can be written as 

 ( )( )
1 1 i i i

i
1 1 i 2 1 i 0 i i

x                                  ;  x   
Y

x x x ;  x .
α +β + ε ≤ υ⎧

= ⎨α +β + β −β − + ε > υ⎩
          (2.3) 

Suits et al. (1978: 132-133) extended model (2.3) so that it can be written in the 

multiple regression model with a dummy variable, iD , consisting of two independent 

variables as follows;  

  i 1 1 i 2 i iY x x= α +β +β + ε* ,                         (2.4) 

where ( )i i ix x D= − υ*  and i
i

i

0 ;x
D

1 ;x
≤ υ⎧

= ⎨ > υ⎩
.   
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2.5 Methods for Finding the Minimum of the Sum of Squares 

This research is related to solve nonlinear least square problem. 

Therefore, there are three methods introduced to find the minimum of sum of 

squares for that problem. Nonlinear least square problems occur for instance in 

nonlinear regression namely piecewise and TP regression as considered in this 

study.   

2.5.1  Gauss-Newton Method 

       The Gauss-Newton approximation (Seber and Wild, 1988: 25) is 

described as the followings. Suppose ( )aθ
�

 is an approximation to the LS estimator θ̂
�

 

of a nonlinear model. By the Taylor’s expansion, we will get 

 

( ) ( )( ) ( ) ( )( )a a af X; f X; F.θ ≈ θ + θ−θ
� � � �

,           (2.5) 

 

where ( )aF. is ( )( )aF. X;θ
�

. It can be applied to the residual vector, ( )r X;θ
�

, as  

  ( ) ( )r X;  Y f X;θ = − θ
�� �

  

 ( )( ) ( ) ( )( )a a ar X; F.= θ − θ−θ
� � �

. 

From the equation ( ) ( )( )
2n

i i
i 1

S Y f x ;
=

θ = − θ∑ �� �
, we will get 

( ) ( )( ) ( )( ) ( )( ) ( ) ( )( )a a a a aS r X; r X; 2r X; F.′ ′θ ≈ θ θ − θ θ−θ
� � � � � �

 

                ( )( ) ( ) ( ) ( )( )a a a aF. F. .
′′

+ θ− θ θ−θ
� � � �

             (2.6) 

Thus, we can conclude that the right hand side of the approximation (2.6) is 

minimized with respect to θ
�

 when 

 ( ) ( ) ( ) ( ) ( )( )
1

a a a a aF. F. F. r X;
−

′ ′⎛ ⎞
θ − θ = θ⎜ ⎟

⎝ ⎠� � �
   

             ( )a= δ
�

.               (2.7) 
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This equation gives the approximation of ( )aθ
�

 then we can say that the next 

approximation is followed by  

 

 ( ) ( ) ( )a 1 a a .+θ =θ + δ
� � �

               (2.8) 

 

The equations (2.7) and (2.8) determine the updating result and the θ̂
�

 can be attained 

by the equation (2.8). In addition, Seber and Wild (1988) mentioned that the Gauss-

Newton algorithm is convergent. 

 

2.5.2  Steepest Descent Method 

The steepest descent method is also known as the gradient descent. It is 

based on the gradient of ′ε ε
� �

.  Seber and Wild (1988: 594) described the theory of this 

method as the followings. The steepest descent method is one of iterative processes 

where an initial guess ( )1θ
�

 is furnished, from which the algorithm sequentially moves 

in pℜ  of points ( )2θ
�

, ( )3θ
�

,… which are aimed to converge to a local minimum θ̂
�

. 

Practically useful is this algorithm method to make sure that ( )h θ
�

, a real-valued 

function of p parameters vector ( )1 2 p, ,..., ′θ = θ θ θ
�

, is reduced at each iteration so that 

( )( ) ( )( )a 1 ah h+θ < θ
� �

. In this research the function ( )h θ
�

 is defined as 

( ) ( )( )
2n

i i
i 1

S Y f x ;
=

θ = − θ∑ �� �
.  

The approximation of the (a+1)th iterative is the same as (2.8) nevertheless the 

updating ( )aδ
�

, the computation of the ath  step, is differently defined as  

( ) ( ) ( )a a adδ = ρ
� �

,               (2.9) 
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where the vector ( )ad
�

 is called the direction of the step and ( )aρ  is the step length.  

Frequently ( )aρ  is selected to approximately minimize ( )S θ
�

 along the line 

( ) ( )a a ,θ +ρδ
� �

 this process known as a line search. If the ( )aρ  is the exact minimum at 

each iteration, then the algorithm is said to have exact line searches; otherwise, it 

employs approximate line searches. Whenever there exists the convergent of ( )S θ
�

 to 

the local minimum, this means that the exact line searches are not manipulated and 

( )S θ
�

 is sufficiently reduced at each iteration (Gill, 1991: 100). A descent direction 

( )ad
�

 can be determined by  

 ( )
( )( )a

a

0

S d
g d 0

ρ=

∂ θ +ρ
′ = <

∂ρ
� �

��
             (2.10)  

By the Taylor expansion, we get 

  

 ( )( ) ( )( ) ( ) ( )a a a 2S d S g d O .′θ + ρ ≈ θ +ρ + ρ
� � � ��

           (2.11) 

  

Thus, when the approximation (2.11) attains, the decrease in function ( )( )aS θ
�

 can be 

obtained by the small enough step ρ in the direction d
�

. The important theorem is 

stated in order to know “how descent directions can be calculated?” as followed. 

 

Theorem 1 A direction d
�

 is a descent direction at parameters vector θ
�

 if and only if 

there exists a positive definite matrix R such that 

 d Rg= −
� �

. 

Proof . It is available on Nonlinear Regression (Seber and Wild, 1988: 595). 

 

Therefore from equations (2.8) and (2.9), we can state that 

 

 ( ) ( ) ( ) ( ) ( )a 1 a a a aR g .+θ =θ −ρ
� � �

              (2.12) 
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Where the choice of R is pR I=  the descent direction becomes to ( )ad g= −
� �

 and this 

is called the steepest descent direction. However, the direction of steepest descent 

depends entirely upon the scaling of θ
�

.   

 

2.5.3 Levenberg-Marquardt Method (Seber and Wild, 1988) 

  This method is a compromise between the Gauss-Newton and steepest 

descent methods. As d 0→
�

, the direction approaches Gauss-Newton. As d →∞
�

, the 

direction approaches steepest descent. Levenberg-Marquardt method is equivalent to 

performing a series of ridge regressions and is useful when the parameter estimates 

are highly correlated or the objective function is not well approximated by a 

quadratic.   

Let a model be fitted into the data, there is likely the function ( )*
if x ;θ
� �

 

as expressed in the model ( )*
i i iY f x ; ,= θ + ε

� �
The problem is to compute the estimates 

of parameters which will minimize ( ) ( ) 2
iS Y f x ;θ = − θ

� �� �
. By utilizing ideas of 

Levenberg together with Marquardt (1963), thus the Levenberg-Marquardt algorithm 

adaptively varies the parameter updates between the gradient descent and Gauss-

Newton update (Seber and Wild, 1988)  

( ) ( ) ( ) ( ) ( ) ( ) ( )( )
1

a a a a a a aF. F. D F. r X;
−

′ ′⎛ ⎞
δ = − +η θ⎜ ⎟

⎝ ⎠� �
,                     (2.13) 

where ( )aD  is a diagonal matrix with positive diagonal element frequently defined to 

be the same as  ( ) ( )a aF. F.
′

 and ( )aη  is the ath  step direction. When ( )aD  is pI  and 

( )a 0η → , the direction approaches Guass-Newton. Whereas, ( )aη →∞ , the direction 

approaches steepest descent.  In the case that ( )a 0η >  then ( ) ( ) ( ) ( )a a a aF. F. D
′

+ η   is 

positive definite, as ( )aD  is positive definite. Thus the updating function ( )aδ
�

 as in 

(2.13) and by the Theorem 1, is a descent direction. And in the case that 
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( )aη →∞ then ( )aδ
�

 tend to zero. Therefore if we select very large ( )aη  then we can 

so fast reduce the function ( ) ( ) 2
iS Y f x ;θ = − θ

� �� �
. Nevertheless,  for many iterations 

( )aη  which are too large, the algorithm adapt with little progress. 

  Marquardt’s finding indicates that the average angle between Gauss-

Newton and steepest descent directions is about 90 degree. A choice of initial value of 

the direction ( )0η  for this research is ( )0 310−η =  used to start and compute the 

updating vector ( )aδ
�

. If ( ) ( )( ) ( )( )a a aS Sθ + δ < θ
� � �

, then η  becomes 
10
η  for the next 

iteration.  Otherwise ( ) ( )( ) ( )( )a a aS Sθ + δ > θ
� � �

, then η  is 10η  for the next iteration.kk 

 

2.6   TP Regression Model 

 

There was first interested the combination of two principal ideas, i.e. Tobit 

and piecewise regression, where each has a different benefit as described before. And  

there were not any literatures which applied these two ideas to cope with the outliers 

problem until Mekbunditkul (2010) first introduced the TP (abbreviated from Tobit-

piecewise) regression as the derivation of the TP regression model and the log-

likelihood function of θ
�

described below: 

According to the two-limit Tobit model (2.1) and by assuming that there exists 

the structural change in regression parameter, the piecewise multiple linear regression 

(Quandt, 1958: 874, Hudson, 1966: 1097-1129, Goldfeld and Quandt, 1971, Suits et 

al. 1978: 132-133) is utilized. The link function as mentioned in the model (2.1), *
iY  

can be broken into two regression regimes as 

  1 11 i1 12 i2 1k ik i i*
i

2 21 i1 22 i2 2k ik i i

x x ... x  ;  if  ,
Y

x x ... x ;  if  ,
α +β +β + +β + ε υ ≤ υ⎧

= ⎨α +β +β + +β + ε υ > υ⎩
              (2.14) 

where iY*  is a dependent variable,  ijx  represents the ith observation of the jth 

independent variable, for j=1, ..., k and i=1, ..., n . In addition, i ixυ = ϑ
� �

 (Quandt, 
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1972: 307), where ix
�

 is the row vector with k variables of the ith observation and ϑ
�

 is 

a k-dim vector of unknown parameters. The errors iε ’s are ( )2
iN 0,σ .  Suppose 

( )0 01 0kx x ,..., x=
�

 is a vector of regressors at a joined point, i.e., 0x ϑ = υ
� �

, then, from 

model (2.5),  
k k

1 1j 0 j 2 2 j 0 j
j 1 j 1

x x
= =

α + β = α + β∑ ∑ ,   i.e., ( )
k

2 1 2 j 1j 0 j
j 1

x
=

α = α − β −β∑ .  

For  iυ > υ , 

( ) ( )
k k k

*
i 1 1j ij 2 j 1j ij 2 j 1j 0 j i

j 1 j 1 j 1
Y x x x

= = =
= α + β + β −β − β −β + ε∑ ∑ ∑ .  

 

By using a dummy variable, i
i

i

1 ; ,  
D

0 ; ,  
υ > υ⎧

= ⎨ υ ≤ υ⎩
, the model (2.5) can be written in a 

single equation as (Mekbunditkul, 2010) 

k k
* * *
i 1 1j ij 2 j ij i 3 i i

j 1 j 1
Y x x D D

= =
= α + β + β +β + ε∑ ∑ ,           (2.15)           

where *
2 2 j 1jβ = β −β  and ( )

k
*
3 2 j 1j 0 j

j 1
x

=
β = − β −β∑ .  

Thus the TP regression model can be written as 

i i i

i i i i i

i i i

L            ;        Y L           

Y Y          ;  L < Y U           

U           ;        Y U          

⎧ ≤
⎪⎪= <⎨
⎪

≥⎪⎩

*

* *

* ,

              

where 
k k

* * *
i 1 1j ij 2 j ij i 3 i i

j 1 j 1
Y x x D D

= =
= α + β + β +β + ε∑ ∑ . In addition, this model can be 

written in the matrix form as 

Y X= θ+ ε
� � �

,                 (2.16) 
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where 

[ ]1 2 3 n 1Y L Y U ×
′′ ′ ′=

� � � �
,  

               
1 2 311 21 12 22 13 23n 1 n 2 n 3L L L Y Y Y U U U ,

′⎡ ⎤= ⎢ ⎥⎣ ⎦
" " "    

*
2 2Y Y=
� �

 and ( )** *
1 11 1k 21 2k 3, ,  ,  ,  ,  ,  , ′

θ = α β β β β β… …
�

 and X is defined as in the 

equation (2.9). Moreover, the limits L and U are defined by 

a im
im

b im

L ;  ,  
L

L  ;  ,   
υ ≤ υ⎧

= ⎨ υ > υ⎩
and a im

im
b im

U  ;  ,        
U

U  ;  .        
υ ≤ υ⎧

= ⎨ υ > υ⎩
                   (2.17) 

The vector *Y
�

 can be described as below: Without loss of generality (WLOG), all of 

the observed data iY* ’s as well as i1 ikx ,  ...,  x  to which iY*  corresponds, for 

i=1, ..., n  are rearranged. Hence, observation vector Y
�

*  consists of three parts. One 

of them is observation with values smaller than the lower limit L. The second 

comprises of values that lie between the limit (L,U) and the third indicates values 

greater than the upper limit U. To be specific, suppose that the observation in each 

part are 1n , 2n  and 3n , respectively. Thus,  

* * * *
1 2 3

n 1
Y Y Y Y

×

′′ ′ ′⎡ ⎤=
⎣ ⎦� � � �

,  

           
1 2 3

* * * * * * * * *
11 21 n 1 12 22 n 2 13 23 n 3Y Y Y Y Y Y Y Y Y ′⎡ ⎤= ⎣ ⎦" " " .   

 

The variance-covariance matrix of *Y
�

is assumed to be 

1

2

3

0 0

0 0

0 0

⎡ ⎤Σ
⎢ ⎥
⎢ ⎥Σ = Σ
⎢ ⎥
⎢ ⎥Σ⎣ ⎦

,      where  mΣ = ( )m1m n mdiag ...σ σ   and  
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2
a im2

im 2
b im

if ,

if

⎧σ υ ≤ υ⎪σ = ⎨
σ υ > υ⎪⎩

  

    
, m = 1, 2, 3; mi 1, ..., n=   .                     

Therefore, the inverse matrix of Σ  is  

1
1

1 1
2

1
3

0 0

0 0

0 0

−

− −

−

⎡ ⎤Σ
⎢ ⎥
⎢ ⎥Σ = Σ
⎢ ⎥
⎢ ⎥Σ⎣ ⎦

. 

Since mΣ  are diagonal matrices, so 
m

1
m

1m n m

1 1diag ,...,− ⎛ ⎞
⎜ ⎟Σ =
⎜ ⎟σ σ⎝ ⎠

 , where m = 1,  2, 3.   

In addition, it is assumed that imε ~ ( )2
imN 0,σ .  

The matrix of  X  independent variables corresponding to 

[ ]1 2 3 n 1Y L Y U ×
′′ ′ ′=

� � � �
, is 

1 1 1 1 1

2 2 2

* *
111 1k1 111 1k1 11

* *
211 2k1 211 2k1 21

* *
n 11 n k1 n 11 n k1 n 1

* *
112 1k2 112 1k2 11

1 * *
212 2k2 212 2k2 22

2

3
n 12 n k2 n 1

1 x x x x x

1 x x x x x
             

1 x x x x x

1 x x x x x
X

1 x x x x x
X X

      
X

1 x x x

′

′

′

′
⎡ ⎤

′⎢ ⎥= =⎢ ⎥
⎢ ⎥⎣ ⎦

… …

… …
# # % # # % # #

… …

… …

… …
# # % # # % # #

… 2 2

3 3 3 3 3 n (2k 2)

* *
2 n k2 n 2

* *
113 1k3 113 1k3 13

* *
213 2k3 213 2k3 23

**
n 13 n k3 n 13 n k3 n 3

          (2.9)

x x

1 x x x x x

1 x x x x x
      

1 x x x x x
× +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥′
⎢ ⎥
⎢ ⎥′⎢ ⎥
⎢ ⎥′⎢ ⎥
⎢ ⎥
⎢ ⎥

′⎢ ⎥
⎣ ⎦

…

… …

… …
# # % # # % # #

… …
 

DPU



 22

where *
ijm ijm imx x D= , im imx D′ =  and im

im
im

1 ; ,   
D

0 ; ,   
υ > υ⎧

= ⎨ υ ≤ υ⎩
 where m=1, 2, 3;  

j=1, …, k; i=1, …, nm , and  k is the number of regressor variables. Note that 2k+2 is 

less than n. 

 

2.7   TP Estimator 

The log-likelihood function of θ
�

 in TP regression model was derived by 

Mekbunditkul (2011) via the p.d.f. of imY , the imth element of vector Y
�

. The p.d.f. 

of imε is assumed to be normal with zero mean and 2
imσ variance and it is independent 

from each other. When given the values of imL  and imU , for  mi 1,  ...,  n=  and  

m = 1, 2 and 3, the p.d.f. of Y
�

was derived into three parts as the followings. 

 

Part 1.  For i1 i1Y L= ,  where 1i 1,  ...,  n= :        

( ) ( )i1Y i1 i1 i1f L =P Y L= , 

  ( )*
i1 i1P Y   L= ≤ , 

     ( )i1 i1 i1P x   L= θ+ ε ≤
� �

,        

  i1 i1 i1

i1 i1

L xP
⎛ ⎞ε − θ

= ≤⎜ ⎟⎜ ⎟σ σ⎝ ⎠
� � , 

  i1 i1

i1

L x⎛ ⎞− θ
= Φ⎜ ⎟σ⎝ ⎠

� � . 

 

Part 2. For i2 i2 i2L Y U< < , where 2i 1,  ...,  n= :        

( )i2 i2 i2P L Y U< < ( )*
i2 i2 i2 i2P L x y= < θ+ ε ≤

� �
,                                        
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*
i2 i2 i2 i2 i2

i2 i2 i2

L x y xP   
⎛ ⎞− θ ε − θ

= < ≤⎜ ⎟⎜ ⎟σ σ σ⎝ ⎠
� �� � , 

*
i2 i2 i2 i2

i2 i2

Y x L x 
⎛ ⎞ ⎛ ⎞− θ − θ

= Φ − Φ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟σ σ⎝ ⎠ ⎝ ⎠
� �� � . 

Hence, ( )
i2

*
i2 i2 i2 i2

i2Y i2 i2 i2 i2

y x y x1 1f y
⎛ ⎞ ⎛ ⎞− θ − θ

= φ = φ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟σ σ σ σ⎝ ⎠ ⎝ ⎠
� �� � , where ( )i2 i2 i2y L , U∈ . 

 

Part 3. For i3 i3Y U= , where 3i 1,  ...,  n= :  

( )i3 i3P Y U=  ( )i3 i3 i3P x  U= θ+ ε ≥
� �

, 

i3 i3 i3

i3 i3

U x1 P
⎛ ⎞ε − θ

= − <⎜ ⎟⎜ ⎟σ σ⎝ ⎠
� � , 

i3 i3

i3

U x1
⎛ ⎞− θ

= −Φ⎜ ⎟σ⎝ ⎠
� � . 

Functions Φ  and φ  are the c.d.f. and p.d.f. of a standard normal distribution, 

respectively.  

 

 Some notations were indicated to be used in the next part as 

{ }L i1 i1 1I i | Y L , i=1,  ...,  n= = , 

{ }Y i2 i2 i2 2I i | L Y U , i 1,  ...,  n  = < < = , and        

{ }U i3 i3 3I i | Y U ,  i 1,  ...,  n  = = = .  

 

From the independent property of each element in the vector Y
�

, the p.d.f. of Y
�

 can 

be expressed as 
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( )
( ) ( )
( ) 2 2

L

1
2 2 2 2 2

i1 i1
Y n 2 n 2i1i I 2

1exp Y X Y X
2L xf y

2

−

∈

⎡ ⎤⎧ ⎫′
− − θ Σ − θ⎢ ⎨ ⎬⎥

⎛ ⎞− θ ⎩ ⎭⎢ ⎥= Φ ⋅⎜ ⎟ ⎢ ⎥σ⎝ ⎠ π Σ⎢ ⎥
⎢ ⎥⎣ ⎦

∏
�

� �� �
� �

� / /               

U

i3 i3

i3i I

U x1
∈

⎛ ⎞− θ
⋅ −Φ⎜ ⎟σ⎝ ⎠
∏ � � .                        (2.19) 

Thus, the log-likelihood function is thus given by  

( ) ( ) ( ) ( )
L

12
i1 2 2 2 2 2 2

i I

n 1 1ln L ;Y ln ln 2 ln Y X Y X
2 2 2

− −

∈

′
θ = Φ λ − π− Σ − − θ Σ − θ∑� � �� � �

    

          ( )
U

i3
i I

+ ln 1
∈

⎡ ⎤−Φ λ⎣ ⎦∑  .                    (2.20) 

where i1 i1
i1

i1

L x− − θ
λ =

σ
� �   and  i3 i3

i3
i3

U x− θ
λ =

σ
� � .   

 

The ML estimators of θ
�

 can be obtained straightforwardly from the log-

likelihood equation (2.20), which consists of three parts, as 

 

( ) ( )
( ) ( ) ( )

L

i1 1 1i1
2 2 2 TP 2 2 2

i1i I i1

ˆln L ; y x ˆX X X Y
ˆ

−
− −

−
∈

⎛ ⎞φ λ∂ θ ′⎜ ⎟ ′ ′= − − Σ θ + Σ⎜ ⎟∂θ σΦ λ⎜ ⎟
⎝ ⎠

∑� � � ��
�

             

            
( )
( ) ( )

U

i3 i3
2k 1 1

i3i I i3

ˆ x 0
ˆ1 + ×

∈

⎛ ⎞φ λ ′⎜ ⎟+ =
⎜ ⎟ σ−Φ λ⎝ ⎠

∑ �
�

. 

 

From Mekbunditkul (2010), TPθ̂
�

was verified as in the form of 
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( ) ( ){ } ( ) ( ){ }11 1/ 2 1 1/ 2
TP 2 2 2 1 1 1 2 2 2 3 3 3

ˆ ˆ ˆX X X H X Y X H
−− − − − −⎡ ⎤′ ′ ′ ′θ = Σ − Σ λ + Σ + Σ λ⎢ ⎥⎣ ⎦� � ��

                        

        ( ) ( ) ( ) ( ){ }1 11 1 1 1/ 2
2 2 2 2 2 2 2 2 2 1 1 1

ˆX X X Y X X X H
− −− − − − −⎡ ⎤′ ′ ′ ′= Σ Σ − Σ Σ λ⎢ ⎥⎣ ⎦� �

                               

             ( ) ( ){ }11 1/ 2
2 2 2 3 3 3 ˆX X X H

−− −⎡ ⎤′ ′+ Σ Σ λ⎢ ⎥⎣ ⎦�
,  

where   ( ) ( ) ( )( ) ( )
( )

( )
( )

1
1

1

11 n 1
1 11 n 1

11 n 1

ˆ ˆ
ˆ ˆ ˆH h h

ˆ ˆ

− −
− − −

− −

′⎛ ⎞φ λ φ λ′ ⎜ ⎟λ = λ λ = ⎜ ⎟Φ λ Φ λ⎜ ⎟
⎝ ⎠

" " ,          (2.21) 

and  ( )3 ˆH λ =
�

 ( ) ( )( )313 n 3ˆ ˆh h ′
λ λ"  

( )
( )

( )
( )

3

3

n 313

13 n 3

ˆˆ

ˆ ˆ1 1

′⎛ ⎞φ λφ λ
⎜ ⎟=
⎜ ⎟−Φ λ −Φ λ⎝ ⎠

" ,    (2.22) 

where 1n 1ˆ−λ   and i3λ̂  are estimators of 1n 1
−λ   and i3λ , respectively. 

 

There exist three parts of TP estimator which the first part is the LS estimator 

based on n2 observations where values are not at the limits. The other two parts 

concern n1 and n3 observations whose values are truncated respectively by the lower 

and upper desired limits.  

 

2.8  Properties of TP Estimator 

  

 In Mekbunditkul’s dissertation, there were verified some properties of TP 

estimator in terms of its bias and mean square error (MSE). Two situations were 

defined: (1) U →∞  and L is finite, (2) L →−∞  and U is finite. Some 

vectors/matrices such as Y,
�

 X, L
�

 and U
�

 and Σ  were defined as in section (2.4) and 

the following statements were indicated to refer throughout this section 

 

C1: Assuming that U →∞  and L is finite, the response variable Y
�

 in TP regression 

model is as 1

2 n 1

L
Y = 

Y ×

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦
�

�
�

, where 1 2n n n= + . 
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C2: Assuming that L →−∞  and U is finite, the response variable Y
�

 in TP regression 

model is as 2

3 n 1

Y
Y

U ×

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦
�

�
�

, where 2 3n n n= + . 

 The TP estimator, TPθ̂
�

corresponding respectively to each of C1 and C2 is 

( ) ( ) ( ) ( ){ }1 11 1 1 1/ 2
TP 2 2 2 2 2 2 2 2 2 1 1 1ˆ ˆX X X Y X X X H

− −− − − −⎡ ⎤′ ′ ′ ′θ = Σ Σ − Σ Σ λ⎢ ⎥⎣ ⎦� ��
,          (2.23) 

( ) ( ) ( ) ( ){ }{ }1 11 1 1 1/ 2
TP 2 2 2 2 2 2 2 2 2 3 3 3ˆ ˆX X X Y X X X H

− −− − − −′ ′ ′ ′θ = Σ Σ + Σ Σ λ
� ��

,          (2.24) 

where ( )1 ˆH λ
�

 and ( )3 ˆH λ
�

 are in the forms of equations (2.23) and (2.24). 

 

Theorem 2. Assume C1, TPθ̂
�

, as defined in equation (2.23), is biased where the 

bounds of the bias are (Mekbunditkul, 2010) 

( ) ( ){ }( ) ( )11 1 1 1/ 2 1/ 2
1 1 1 1 2 2 2 1 1 1 1Bias A I A I A I A X X X 1 L

−− − − − −′ ′= − + θ− − + Σ Σ −ΣA � ��
, 

( ){ } ( ){ }( )
( )

11 1 1
1 1 1 1 2 2 2

1 1 1/ 2
2 2 2 1 1 1 2 2

Bias I A I A I A I A X X

                X L X L X 1 .

u
−− − −

− − −

′= − + θ− − + Σ

′ ′ ′⋅ Σ − Σ + Σ

�

� � �

 

Proof. It is available in Mekbunditkul’s dissertation. 

Theorem 3. Assume C1 holds. The asymptotic variance-covariance matrix of TPθ̂
�

, 

as defined in (2.23), is  (Mekbunditkul, 2010) 

( ) ( ) ( ){ } 11
1 1 1 2 2 2X WX X W X X W X

−−
′ ′ ′= + ,  where ( ) 1

1 1 1W G − −= λ Σ  and 

1
2 2W −= Σ . 

Proof. It is available in Mekbunditkul’s dissertation. 

 

Theorem 4. If C2 holds, the estimator TPθ̂
�

, as defined in equation (2.24), is biased 

where the bounds of the bias are (Mekbunditkul, 2010) 
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( ){ } ( ){ }
( ) ( )

1 1
2 2 2 2

11 1 1 1
2 2 2 3 3 3 2 2 2 2 2

Bias I A I A I A I A

              . X X X U X U X 1 ,

− −

−− − − −

= − + θ− − +

⎧ ⎫′ ′ ′ ′Σ Σ − Σ − Σ⎨ ⎬
⎩ ⎭

A �

�� �

 

( ){ } ( ) ( ){ } ( )
11 11 1/ 2

2 2 2 2 2 3 3 3 2 2Bias I A I A X X X U 1 A I Au
−− −− −⎡ ⎤′ ′= − + Σ Σ + − + θ⎢ ⎥

⎣ ⎦�� �
. 

Proof. It is available in Mekbunditkul’s dissertation. 

 

Theorem 5. Assume C2 holds. The asymptotic variance-covariance matrix of TPθ̂
�

, 

as defined in (2.24), is (Mekbunditkul, 2010) 

( ) ( ) ( ){ } 11
3 3 3 2 2 2X WX X W X X W X

−−
′ ′ ′= + , where  ( ) 1

3 3 3W G −= λ Σ  , and 

1
2 2W −= Σ   (Mekbunditkul, 2010). 

Proof. It is available in Mekbunditkul’s dissertation. 

 

Theorem 6. Let C1 hold, then the ML estimators of each 2
aσ  and 2

bσ  in a TP 

regression model are obtained using (Mekbunditkul, 2010) 

( )2 2
j j jˆmax c , f < σ

2
2

j j j
1d d 2f
2

⎛ ⎞
< + +⎜ ⎟⎜ ⎟
⎝ ⎠

,    where j a, b= ,             

jc 0=  if 2
j j j

1d d 2f  0
2

− + <   and jc = 2
j j j

1d d 2f
2

− +  otherwise,             

( )j1 j1
j

j2

ˆ1 Y L
d

n

′ −
= � � �  , and 

( ) ( ) ( ) ( )j1 j1 j1 j1 j2 j2 j2 j2
j

j2 j2

ˆ ˆ ˆ ˆY L Y L Y Y Y Y
f

n n

′ ′− − − −
= +� � � � � � � � . 

Proof. It is available in Mekbunditkul’s dissertation. 
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Theorem 7. Let C2 hold, then ML estimators of each 2
aσ  and 2

bσ  in the TP regression 

model are obtained by (Mekbunditkul, 2010) 

( )2 2
j j jˆmax p , r < σ

2
2

j j j
1q q 2r
2

⎛ ⎞
< + +⎜ ⎟⎜ ⎟
⎝ ⎠

,    where   j a, b= ,             

jp 0=  if 2
j j j

1q q 2r  0
2

− + <   and jp = 2
j j j

1q q 2r
2

− +  otherwise, 

( )j3 j3
j

j2

ˆ1 U Y
q

n

′ −
= � ��   and  

( ) ( ) ( ) ( )j3 j3 j3 j3 j2 j2 j2 j2
j

j2 j2

ˆ ˆ ˆ ˆU Y U Y Y Y Y Y
r

n n

′ ′− − − −
= +� � � � � �� � . 

Proof. It is available in Mekbunditkul’s dissertation. 

 

Whenever the same sample sizes n1 and n2 are assumed then an estimate of 

variance 2
TPσ  is as their pooled average of 2

aσ  and 2
bσ   (Snedecor and Cochran, 1989 

and Welch, 1947). That is the ML estimator of  2
TPσ  is 

2 2
2 a b
TP

ˆ ˆˆ
2

σ +σ
σ = , where 2

aσ̂  

and 2
bσ̂  as shown in Theorems 6 and 7.      
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