APPLICATION OF ANALYTICAL HIERARCHY PROCESS METHOD ON MAYOR ELECTION AT BANDARLAMPUNG BASED ON THE CONCEPT POLITICAL MARKETING MIX

Ridho Bramulya Ikhsan
Doctor of Science In Management, Department of Management and Business, Padjajaran University

ABSTRACT

The application of political marketing mix centered on the needs of voters who became the center of attention in fostering long-term relationships between candidates and their constituents. The candidate of the mayor must have to fulfill the need, wishes, and hope to win in the local election. Therefor, the candidate need to do research to recognize their constituents in the context as consumers politics.

The application of analytical hierarchy process method (AHP) can be used to assist in determining the candidate mayor in a strategic move to win the election if exposed to the existence of several criteria and some alternative. Criteria in decision-making weight should have some alternative. The criteria that referred to consist of: products, promotions, price, and place. While the criteria is to be determined the weight local partner, with alternative from the criteria products is party image, leader image, manifesto. An alternative from criteria promotion is advertising, broadcasts, public relations, direct mail. Price criteria is an alternative from economics, psychological and national. An Alternative from the place is local network, canvassing and leader tour. After determined the weight of each criterion, the next step is to determine the weight of each alternative for each of its criteria so that by global weight.

Assessment voters in choosing of governor is very important to choosing candidates in the election Mayor of Bandar Lampung.

Keyword: Analytical Hierarchy Process, Political Marketing Mix, Regional Election.

INTRODUCTION

Political marketing relatively new undeveloped but activity marketing in political has done away before the intellectual learn it. In the United States, political marketing was implemented in 1926 when the message politics conveyed through posters, pamphlets, newspapers, and magazines. Rothscild said, ads has been used in the United State presidential election since the era Abraham Lincoln (Seputar Indonesia, 2009). Thus it can be said that the politicians have been using the concept political marketing to seize the voice of the voters. A victory Barrack Obama in the election for President of the United States is not only to expertise in political negotiations but because he was able to run the
concept *political marketing* maximally. In addition, a victory of Susilo Bambang Yudhoyono - Boediono in quickly from various *independent research team*, is a victory marketing team. Thus it can be said that the implementation of the program *political marketing* to fulfill the optimum, desire, and market expectation voters can believed to be able to bring candidates to win the competition politics both nationally and in the region.

Firmansyah (2008) stated that political marketing with marketing in business have differences, although marketing mixed remains in political marketing, where there is a nuance *political marketing* that must be paid attention to political objectives because deeply with business objectives. More than mentioned that *political marketing* is a process, and must be taken through the two main things, the marketing programs and voters segmentation. Marketing program is one who conveys political product that is called by 4P (product, the price, promotion, and places); *voters segmentation* is a way to determine the voters at several levels category and packaging products politics can be implemented in accordance with the category.

The application of *political marketing mix* centered on the needs of voters who became the center of attention in fostering long-term relationships between candidates and their constituents. The candidate of the mayor must have to fulfill the need, wishes, and hope to win in the local election. Therefor, the candidate need to do research to recognize their constituents in the context as consumers politics.

In this research, unit analysis is a graduate student in Bandarlampung City, in which students is a potential market target for the candidate of the mayor to gain votes in the election process. An analysis of the evidence on youth electoral behaviour (Dermody and Hanmer-Lloyd, 2005b) indicates that young people are the most disengaged of all the electoral segments in Britain, with them increasingly not voting as they become eligible,
and continuing not to vote throughout their lives. Thus for this age group, it appears that non-voting is becoming the norm. In the 1997 British general election, 43 percent of 18-24 year olds did not vote, in 2001 this increased to 61 per cent, and in 2005 63 percent did not vote (Mori, 2005). A number of studies indicate this behaviour is not confined to national elections; it also includes local and European elections – where youth turnout at each election point is steadily declining (Bromley and Curtice, 2002; Mori, 2005; Mulgan and Wilkinson, 1997; Park, 1999; Russell et al., 2002).

The results of the research that has been conducted by experts can be used as a reference for the mayor candidates to see the perspective of students in politics, disseminating information concerning the procedure how to vote in election because there is some students who are beginners in the activities of the election and the election and convince the students that the election is a process direct democracy, public, free, confidential, honest and fair, so that later the students will take part in the Election Mayor Bandarlampung City.

Mayor election Bandarlampung carried out by means was selected in the pairs directly by the voters through general election, in which the candidate of the mayor was proposed by political parties or coalition party politics. In this case, the criteria that is in the concept political marketing mix can be an alternative to increase the effectiveness in effort to campaign on election mayor in Bandarlampung. Because the voters are heterogeneous, so it will depend on the perspective voters to the marketing underage applied by the candidate of the mayor election in the campaign.

The aim of the research is to know political marketing mix a higher priority for the students to making a decision to vote major candidate in the election of mayor in Bandarlampung city.
LITERATURE STUDY

Political Marketing Mix

The application *political marketing mix* in the Indonesian politics has become something not could be left, political parties must be able to recognize there constituents, sympathizers and continually to observe what was done by their competitors. Using the concept *political marketing mix*, political parties and candidates will be able to formulate market target that they want and to focus on aim at its target. In addition, the concept *political marketing mix* will support the process of creation strategy political communication between political parties or candidates with character of the is the target for target.

In connection with the explanation above, Niffenegger in Wring (1997), organising the concept *political marketing mix* up to 4: *product, the price, promotion, place* that is summarized in the figure 1.1.

Figure 1.1 The Political Marketing Process

![Political Marketing Process Diagram](image-url)

Source: Niffenegger in Wring (1997)
Product

In political marketing, product is the key of marketing mix. Product are similar to the marketing services, because it involves political parties and candidates. Therefore, an instrument products can be divided into party image, leader image, and manifesto. Main products from political party is platform the party that contains the concept, identity, ideology and work programs, but platform does not able to determine the price selling political parties. Political parties need positive impression image to nurture the community for the political parties.

Promotion

Wring (1997), divided the principle in through the media is two parts, namely broadcast media and free of charge. Media broadcast which is generally used is the advertising whose posters, form, spread to the public and use in primetime (tv series) on television and radio. In addition media can also use the media that are developing countries, such as direct mail, direct marketing, SMS or telephone call.

Free media that used political parties and candidates to snatch the mass could be polling that applied to the public. In addition, they can also do management reports that expose to the party as well as candidate can continue (Harris, 2001).

Broadcast also gave a great impact on promotion. Harris (2001), explained that discussion in local media, as well as routine appearance as instructor will give a positive image on the candidate. In addition broadcasting, can also use direct mail. Direct mail is often used by the political party in the United States and Britain.

Wring (1997) said in addition advertising, broadcast, and direct mail, using public relation with the related it can give an added value in candidates. Public relation can be a candidate, the political party and the campaign team with the media, floating masses, and
supporters. Political parties and candidates were imaged polite, clean and care about the community will be preferred over political parties and candidates with image and always reap riot thugs. Relations form other is a good relationship with the surrounding communities through social service, and develop the project is on target, efficient and to build a good communication and smoothly with mass media.

Price

Firmansyah (2008), divided 3 factor price in political marketing mix (a) economic, namely whole cost issued by the campaign team to propose candidates who raised. Starting from advertising, the meeting, consolidation meeting community leaders are familiar with, and other; (b) rates psychological perception, the psychology of the electorate cast their votes to figures. This was a comfort or discomfort with voters to choose different ethnic backgrounds who, religion, or any other; and (c) national, as image that is given by the voters to candidates. During this candidates have nationalism that was or not, to give positive image of the nation or not. For the context, this local can be "harmonization candidate against its territory.

Place

Many political parties in the UK organize membership and its political machine regional and local to base. Wring (1997), in general explained factors place consists of 3, the local network, canvassing and leader tour. The explanation is:

a. Local network is an act locally has ever seen or is being done by candidates, the team successful candidates and party cadres who are fighting for the candidate with the aim to build a relationship between candidates with the voters, to form a positive image of the candidates themselves.
b. *Canvassing* is an effort to collect the mass and menghimpunnya in bags voice that is based on the criteria that made the party or candidate.

c. *Leader tour* on involvement candidate party cadres, as well as the campaign team in these activities in the community. This can be a visit to make demands good candidates to the organization social and religious organizations.

Analytical Hierarchy Process

In essence, AHP is parrot to solve a problem that does not contain complex structured into the components, manage its components in a hierarchy, and put numeric value as a replacement for human perception in comparison relative, and finally produce a synthesis that determined the sequence and the priorities of components components.

The process in AHP technical decision-makers that developed for cases that have various levels (hierarchy) analysis. This method is a practical way to deal with qualitatively various relations functional in a network that has been prepared in a structured and interdependence. This method use the comparison in pairs, count weighting factor, and analyze it to produce a priority is relatively among alternative. (Herjanto, 2009).

According to Bourgeois (2005), AHP usually used for the purpose of priorities to draw up various alternative/options and choices mentioned is complex or multi criteria. In general, by using AHP, it is the priority that produced will be consistent with the theory, logical, transparent, and participatory. With the assertion that more than associated with transparency and participation, AHP will be very suitable to be used for making policy priorities campaign activities in the election.

Every researcher who use AHP must define situation carefully, and put as much as possible details relevant, and arranges them model hierarchy that consists of several levels details, which is the focus problems, the criteria, and alternative. (Herjanto, 2009)
The concept formulation trial hierarchy are:

1. Hierarchy at the highest level is focused on problems, consisted of only one element that is a comprehensive target. The focus is the main problem issues that need to be sought for the solution.

2. High criteria, is an important aspect that need to be considered in taking the decision to focus on problems, for a complex or multi-level, the criteria can be reduced to sub-sub criteria. Thus the criteria can be made more than one level hierarchy.

3. High alternative, which is the last action plans, or alternative. Alternative is a choice of pernyeleaian its problems. (Herjanto, 2009)

The methodology and results of research

This research involving 100 students who are spread out in Bandarlampung City on the condition that those students must have ID Cards as Bandarlampung City and listed as the fixed voter. 100 Students taking was chosen by purposive. In collecting primary data, used questionnaire by using a priority scale of variables and sub variables that are used to test Analysis of interests hierarchy process (AHP) with the criteria 1 - 9.

<table>
<thead>
<tr>
<th>High interest</th>
<th>Definition</th>
<th>Note:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Equally important</td>
<td>Both the same importance</td>
</tr>
<tr>
<td>3</td>
<td>A little bit more important</td>
<td>The claim that a little bit more important than the others</td>
</tr>
<tr>
<td>5</td>
<td>More important</td>
<td>The claim that one is very important rather than the other</td>
</tr>
<tr>
<td>7</td>
<td>It is more important</td>
<td>The claim that one is more important than the others</td>
</tr>
<tr>
<td>9</td>
<td>It is imperative more important</td>
<td>The claim that the absolute much more important than other statements</td>
</tr>
<tr>
<td>2,4,6,8</td>
<td></td>
<td>The values between between the two Directors, near</td>
</tr>
</tbody>
</table>

Hierarchy Model decision to choose the candidate of the Mayor Bandar Lampung in Political Marketing mix approach can be seen in figure 1.2.
Using the methods hierarchy analysis of this process makes it possible to get assessment that is based on the evaluation by using questionnaires. It consists of these steps with as follows.

1. Testing consistency data

 It will count with limit the Consistency Ratio (CR). If the questionnaire had CR value more than 10% or 0.1, count must be repeated or be revised.
a. To get one of various assessment, we must unite directors with geometric mean, with the formula:

\[GM = \sqrt[n]{X_1 \times X_2 \times X_3 \ldots \times X_n} \]

Where:
- \(GM \) = Geometric Mean
- \(X_1, X_2, X_3, \ldots, X_n \) = Weight assessment to 1, 2, 3, \ldots, n
- \(N \) = N (ordo)

b. Make matrix comparison (by factor and subfactor), then change with decimal numbers.

c. The comparison matrix multiply with priority weighting matrix.

d. For every element matrix with matrix element weight priority (e.g., called matrix G).

e. Calculate the Maximum Eigenvalue, as follows:

\[ME = \frac{\text{Sum Of Elements in Matrix}}{n} \]

Calculate the Consistency index = \(\frac{ME - n}{n - 1} \)

Count Consistency ratio (CR) = \(\frac{\text{Consistency Index}}{\text{Random Index (from table)}} \)

2. Testing Consistency Hierarchy as follows:

\[\text{CRH} = \frac{M}{M'} \]

3. Analysis and discussion.

Is the interpretation of data processing result in the form priority weight criteria as well as an alternative that formed a hierarchy as well as a result of the criteria which and alternative what has been chosen from some persons and alternative.
The result of AHP is to determine the criteria for the most a priority for students to make a decision in determining the vote for candidates of the mayor of Bandarlampung.

After assessment comparisons have been incorporated in matrix comparison, then to get a matrix must be done price measure. The results are:

1. Geometriks Mean of 100 matrixes student assessment

\[
GM_{12} = \sqrt[10]{X_1 \times X_2 \times X_3 \times X_4 \times \ldots \times X_n} = \frac{1}{10} \sqrt[10]{1.70275 \times 10^{-52}} = 0.30
\]

\[
GM_{13} = \sqrt[10]{X_1 \times X_2 \times X_3 \times X_4 \times \ldots \times X_n} = \frac{1}{10} \sqrt[10]{1.1594 \times 10^{-53}} = 0.29
\]

\[
GM_{14} = \sqrt[10]{X_1 \times X_2 \times X_3 \times X_4 \times \ldots \times X_n} = \frac{1}{10} \sqrt[10]{7.2766 \times 10^{-53}} = 0.30
\]

\[
GM_{21} = \sqrt[10]{X_1 \times X_2 \times X_3 \times X_4 \times \ldots \times X_n} = \frac{1}{10} \sqrt[10]{5.8728 \times 10^{-51}} = 3.29
\]

\[
GM_{23} = \sqrt[10]{X_1 \times X_2 \times X_3 \times X_4 \times \ldots \times X_n} = \frac{1}{10} \sqrt[10]{5.4406 \times 10^{-49}} = 0.32
\]

\[
GM_{24} = \sqrt[10]{X_1 \times X_2 \times X_3 \times X_4 \times \ldots \times X_n} = \frac{1}{10} \sqrt[10]{1.5614 \times 10^{-51}} = 0.31
\]

\[
GM_{31} = \sqrt[10]{X_1 \times X_2 \times X_3 \times X_4 \times \ldots \times X_n} = \frac{1}{10} \sqrt[10]{8.625 \times 10^{-52}} = 3.38
\]

\[
GM_{32} = \sqrt[10]{X_1 \times X_2 \times X_3 \times X_4 \times \ldots \times X_n} = \frac{1}{10} \sqrt[10]{9.0064 \times 10^{-49}} = 2.61
\]

\[
GM_{34} = \sqrt[10]{X_1 \times X_2 \times X_3 \times X_4 \times \ldots \times X_n} = \frac{1}{10} \sqrt[10]{8.2866 \times 10^{-53}} = 0.30
\]

\[
GM_{41} = \sqrt[10]{X_1 \times X_2 \times X_3 \times X_4 \times \ldots \times X_n} = \frac{1}{10} \sqrt[10]{1.3743 \times 10^{-52}} = 3.32
\]

\[
GM_{42} = \sqrt[10]{X_1 \times X_2 \times X_3 \times X_4 \times \ldots \times X_n} = \frac{1}{10} \sqrt[10]{3.0498 \times 10^{-49}} = 3.12
\]

\[
GM_{43} = \sqrt[10]{X_1 \times X_2 \times X_3 \times X_4 \times \ldots \times X_n} = \frac{1}{10} \sqrt[10]{8.4474 \times 10^{-52}} = 3.40
\]

From the result of vote counting matrixes comparison in pairs from the answer students, then make matrixes geometry mean of 100 matrixes assessment in pairs students and the result was summed up in the table 1.1.
Table 1.1 Geometriks Mean of 100 Matrix From Student Assessment

<table>
<thead>
<tr>
<th>The criteria</th>
<th>Assessment</th>
<th>Products</th>
<th>Promotions</th>
<th>Price</th>
<th>Place</th>
</tr>
</thead>
<tbody>
<tr>
<td>Products</td>
<td>1</td>
<td>0.30</td>
<td>0.29</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>Promotions</td>
<td>3.29</td>
<td>1</td>
<td>0.32</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td>Price</td>
<td>3.38</td>
<td>2.16</td>
<td>1</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>Place</td>
<td>3.32</td>
<td>3.12</td>
<td>3.40</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td>10.99</td>
<td>6.58</td>
<td>5.02</td>
<td>1.91</td>
<td></td>
</tr>
</tbody>
</table>

By doing assessment is relative in every cell in a way to each cell is divided by the number of each has columns then, will be obtained the relative per cell. Finally in each factor horizontally have received a combined total weight and sought his priorities.

Table 1.2 Matrix Weight Comparison Assessment Criteria In Pairs To Vote For The Candidates Of The Mayor Of Bandarlampung

<table>
<thead>
<tr>
<th>The criteria</th>
<th>Assessment</th>
<th>Products</th>
<th>Promotions</th>
<th>Price</th>
<th>Place</th>
<th>Sum</th>
<th>The priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Products</td>
<td>0.09</td>
<td>0.05</td>
<td>0.06</td>
<td>0.16</td>
<td>0.35</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>Promotions</td>
<td>0.30</td>
<td>0.15</td>
<td>0.06</td>
<td>0.16</td>
<td>0.68</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>Price</td>
<td>0.31</td>
<td>0.33</td>
<td>0.20</td>
<td>0.16</td>
<td>0.99</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>Place</td>
<td>0.30</td>
<td>0.47</td>
<td>0.68</td>
<td>0.52</td>
<td>1.98</td>
<td>0.49</td>
<td></td>
</tr>
<tr>
<td>Number of</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

2. The trial Consistency Matrix

a. Looking for value $[A] = \text{matrix} \times \text{weight priority}$

$$
\begin{bmatrix}
1 & 0.30 & 0.29 & 0.29 \\
3.29 & 1 & 0.32 & 0.31 \\
3.38 & 2.16 & 1 & 0.30 \\
3.32 & 3.12 & 3.40 & 1 \\
\end{bmatrix}
\times
\begin{bmatrix}
0.09 \\
0.17 \\
0.25 \\
0.49 \\
\end{bmatrix}
=
\begin{bmatrix}
0.36 \\
0.69 \\
1.06 \\
2.16 \\
\end{bmatrix}
$$

b. Looking the vektor $B = \frac{\text{Vektor } [A]}{\text{Weight Priority}}$

$$
\begin{bmatrix}
0.36 & 0.69 & 1.06 & 2.16 \\
0.09 & 0.17 & 0.25 & 0.49 \\
\end{bmatrix}
=
\begin{bmatrix}
4.06 & 4.09 & 4.27 & 4.37 \\
\end{bmatrix}
$$

c. Looking the Maximum Eigenvalue $= \frac{\text{Sum of Element in to Matrix B}}{N}$

Maximum Eigenvalue $= \frac{4.06 + 4.09 + 4.27 + 4.37}{4} = 4.20$
MEV = 4.20

d. Looking Consistency Index = \(\frac{\text{MEV} - N}{N - 1} \)

Consistency Index = \(\frac{4.20 - 4}{4 - 1} = \frac{0.20}{3} = 0.07 \)

e. Search the value random index (see table)

<table>
<thead>
<tr>
<th>The Order's Matrix (N)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>The random</td>
<td>0.00</td>
<td>0.00</td>
<td>0.58</td>
<td>0.90</td>
<td>1.12</td>
<td>1.24</td>
<td>1.32</td>
<td>1.41</td>
<td>1.45</td>
<td>1.49</td>
</tr>
</tbody>
</table>

For N = 4, then the value random index = 0.90

f. Looking Consistency ratio = \(\frac{\text{CI}}{\text{RI}} \)

Consistency ratio \(\frac{0.07}{0.90} = 0.07 \)

CR = 0.07. It turned out that the results are continuously because the CR (0.07) < RI (0.10)

From processing data result, the weight believe every criteria that is called by local weight. To find an alternative that best so that it must be sought for global weight with how to multiply weight with local weight is in hierarchy above. The synthesis produce criteria priority of university students who then formed 1 models hierarchy and was summed up in the picture 1.3

Place = 1 × 0.49 = 0.49
Price = 1 × 0.25 = 0.25
Promotions = 1 × 0.17 = 0.17
Products = 1 × 0.09 = 0.09
1.3 Hierarchy Decisions Based On Criteria To Vote For The Candidate Of The Mayor Of Bandarlampung

After the criteria place is first priority for students in vote for the candidate of the Mayor of Bandarlampung, it will be do analysis of the criteria alternatives for the local network, canvassing, and leader tour as the consideration alternative for students in vote for the candidates of the Mayor.

After the assessment comparison has been included in the matrix, then to get a matrix must be done price measure.

1. Geometriks Mean of 100 matrixes student assessment

\[
\begin{align*}
\text{GM}_{12} &= \sqrt[100]{X_1 \times X_2 \times X_3 \times X_4 \times \ldots \times X_n} = \sqrt[100]{3.4388 \times 10^{-37}} = 0.4318 \\
\text{GM}_{13} &= \sqrt[100]{X_1 \times X_2 \times X_3 \times X_4 \times \ldots \times X_n} = \sqrt[100]{6.2661 \times 10^{-41}} = 0.3962 \\
\text{GM}_{21} &= \sqrt[100]{X_1 \times X_2 \times X_3 \times X_4 \times \ldots \times X_n} = \sqrt[100]{2.908 \times 10^{36}} = 2.3154 \\
\text{GM}_{23} &= \sqrt[100]{X_1 \times X_2 \times X_3 \times X_4 \times \ldots \times X_n} = \sqrt[100]{3.1575 \times 10^{-42}} = 0.3845 \\
\text{GM}_{31} &= \sqrt[100]{X_1 \times X_2 \times X_3 \times X_4 \times \ldots \times X_n} = \sqrt[100]{4.7877 \times 10^{40}} = 2.5515
\end{align*}
\]
\[\text{GM}_{12} = \sqrt[10]{X1 \times X2 \times X3 \times X4 \times \ldots \times X_n} = 10^{0.19952E+43} = 2,7109 \]

After the count matrixes comparison in pairs from the answer students, then make matrixes geometry mean of 100 matrixes assessment in pairs students and the result was summed up in the table 1.3

Table 1.3. Geometric Mean of 100 Matrix Student Assessment About Alternative Place

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Assessment</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Local Network</td>
<td>Canvassing</td>
<td>Leader Tour</td>
<td></td>
</tr>
<tr>
<td>Local Network</td>
<td>1</td>
<td>0.4318</td>
<td>0.3962</td>
<td></td>
</tr>
<tr>
<td>Canvassing</td>
<td>2.3154</td>
<td>1</td>
<td>0.3830</td>
<td></td>
</tr>
<tr>
<td>Leader Tour</td>
<td>2.5515</td>
<td>2.7109</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Number of</td>
<td>5.8669</td>
<td>4.1427</td>
<td>1.7792</td>
<td></td>
</tr>
</tbody>
</table>

By doing assessment is relative in every cell in a way to each cell is divided by the number of each has columns and it will be increased by the relatively per cell. Finally in each factor horizontally have received a combined total weight and sought his priorities.

Table 1.4. Weight Matrix Assessment alternatives for comparison in pairs

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Assessment</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Local Network</td>
<td>Canvassing</td>
<td>Leader Tour</td>
<td></td>
</tr>
<tr>
<td>Local Network</td>
<td>0.1704</td>
<td>0.1042</td>
<td>0.2227</td>
<td>0.4974</td>
</tr>
<tr>
<td>Canvassing</td>
<td>0.3947</td>
<td>0.2414</td>
<td>0.2153</td>
<td>0.8513</td>
</tr>
<tr>
<td>Leader Tour</td>
<td>0.4349</td>
<td>0.6544</td>
<td>0.5621</td>
<td>1.6513</td>
</tr>
<tr>
<td>Sum</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

2. The trial Consistency Matrix

a. Looking for value \([A] = \text{matrix} \times \text{weight priority} \]

\[
\begin{bmatrix}
1 & 0.4260 & 0.3962 \\
2.3154 & 1 & 0.3830 \\
2.5515 & 2.7109 & 1 \\
\end{bmatrix} \times \begin{bmatrix}
0.1658 \\
0.2838 \\
0.5404 \\
\end{bmatrix} = \begin{bmatrix}
0.5048 \\
0.8785 \\
1.7427 \\
\end{bmatrix}
\]

b. Looking vektor B = \(\frac{\text{Vektor}[A]}{\text{Weight Priority}} \)

\[
\begin{bmatrix}
0.5048 & 0.8785 & 0.5504 \\
0.1658 & 0.2838 & 1.7427 \\
\end{bmatrix} = \begin{bmatrix}
3.0446 & 3.0957 & 3.1660 \\
\end{bmatrix}
\]

c. Looking Maximum Eigenvalue = \(\frac{\text{Sum of Element in to Matrix B}}{N} \)
\[
\frac{3.0446 + 3.0957 + 3.1660}{3} = 3.1021
\]

MEV = 3.1021

d. Looking Consistency Index = \(\frac{\text{MEV} - \text{N}}{\text{N} - 1} \)

Consistency Index = \(\frac{3.1021 - 3}{3 - 1} = \frac{0.1021}{2} = 0.051 \)

CI = 0.051

e. Search the value random index (see table)

<table>
<thead>
<tr>
<th>The Order's Matrix (N)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>The random</td>
<td>0.00</td>
<td>0.00</td>
<td>0.58</td>
<td>0.90</td>
<td>1.12</td>
<td>1.24</td>
<td>1.32</td>
<td>1.41</td>
<td>1.45</td>
<td>1.49</td>
</tr>
</tbody>
</table>

For N = 3, then the value random indeknya = 0.58

f. Looking Consistency ratio = \(\frac{\text{CI}}{\text{RI}} \)

Consistency ratio \(\frac{0.051}{0.58} = 0.088 \rightarrow \text{CR} = 0.088 \)

It turned out that the results are continuously because the CR (0.088) < RI (0.10)

There are 3 alternative of criteria. The Great weight priority and discussion of the three alternative after the synthesis produces a priority alternative as follows:

- \(\text{Local Network} = 0.49 \times 0.1658 = 0.08 \)
- \(\text{Canvassing} = 0.49 \times 0.2838 = 0.139 \)
- \(\text{Leader Tour} = 0.49 \times 0.5504 = 0.269 \)

After the weight of priorities criteria alternative \(\text{places} \), formed a hierarchy of students in choosing the candidate of the Mayor Bandarlampung criteria on alternative \(\text{place} \) and was summed up in the figure 1.4
The alternative criteria place in making a decision to vote for the candidates of the Mayor of Bandarlampung namely economic, psychological and national must be second priority for respondents in choosing the candidate of the mayor.

After the assessment comparison has been included in the matrix, then to get a matrix must be done price measure.

1. Geometriks Mean of 100 matrixes student assessment

\[
GM_{12} = \sqrt[100]{X_1 \times X_2 \times X_3 \times X_4 \times \ldots \times X_n} = 10^{0.671648} - 37 = 0.4347
\]

\[
GM_{13} = \sqrt[100]{X_1 \times X_2 \times X_3 \times X_4 \times \ldots \times X_n} = 10^{0.639932} - 38 = 0.4246
\]

\[
GM_{21} = \sqrt[100]{X_1 \times X_2 \times X_3 \times X_4 \times \ldots \times X_n} = 10^{0.46662}E + 36 = 2.3254
\]

\[
GM_{23} = \sqrt[100]{X_1 \times X_2 \times X_3 \times X_4 \times \ldots \times X_n} = 10^{0.38808} - 41 = 0.3924
\]

\[
GM_{31} = \sqrt[100]{X_1 \times X_2 \times X_3 \times X_4 \times \ldots \times X_n} = 10^{0.4688}E + 37 = 2.3807
\]

\[
GM_{32} = \sqrt[100]{X_1 \times X_2 \times X_3 \times X_4 \times \ldots \times X_n} = 10^{0.125642}E + 41 = 2.5762
\]
After the count matrixes comparison in pairs from the answer respondents, then make matrixes geometry *mean* of 100 matrixes assessment in pairs respondents and the result was summed up in the table 1.5

Table 1.5 Geometriks Mean of 100 matrix student assessment

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Economic</th>
<th>Psychological</th>
<th>National</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economic</td>
<td>1</td>
<td>0.4347</td>
<td>0.4246</td>
</tr>
<tr>
<td>Psychological</td>
<td>2.3254</td>
<td>1</td>
<td>0.3924</td>
</tr>
<tr>
<td>Nasional</td>
<td>2.3807</td>
<td>2.5762</td>
<td>1</td>
</tr>
<tr>
<td>Sum</td>
<td>5.7061</td>
<td>4.0109</td>
<td>1.817</td>
</tr>
</tbody>
</table>

By doing assessment is relative in every cell in a way to each cell is divided by the number of each has columns then, will be obtained the relative per cell. Finally in each factor horizontally have received a combined total weight and sought his priorities.

Table 1.6 Matrix weight Assessment Alternative price comparison in pairs

<table>
<thead>
<tr>
<th>The criteria</th>
<th>Economic</th>
<th>Psychological</th>
<th>National</th>
<th>Sum</th>
<th>The priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economic</td>
<td>0.1753</td>
<td>0.1084</td>
<td>0.2337</td>
<td>0.5173</td>
<td>0.1724</td>
</tr>
<tr>
<td>Psychological</td>
<td>0.4075</td>
<td>0.2493</td>
<td>0.2160</td>
<td>0.8728</td>
<td>0.2909</td>
</tr>
<tr>
<td>National</td>
<td>0.4172</td>
<td>0.6423</td>
<td>0.5504</td>
<td>1.6099</td>
<td>0.5366</td>
</tr>
<tr>
<td>Sum</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

2. The trial consistency matrix

a. Looking for value \([A] = \text{matrix} \times \text{weight priority}\)

\[
\begin{bmatrix}
1 & 0.4347 & 0.4246 \\
2.3254 & 1 & 0.3924 \\
2.3807 & 2.5762 & 1
\end{bmatrix}
\begin{bmatrix}
0.1724 \\
0.2909 \\
0.5366
\end{bmatrix}
= \begin{bmatrix}
0.5268 \\
0.9025 \\
1.6967
\end{bmatrix}
\]

b. Looking vektor B = \(\frac{\text{Vektor [A]}}{\text{Weight Priority}}\)

\[
\begin{bmatrix}
0.5268 & 0.9025 & 1.6967 \\
0.1724 & 0.2909 & 0.5366
\end{bmatrix}
= \begin{bmatrix}
3.0556 & 3.1024 & 3.1619
\end{bmatrix}
\]

c. Looking Maximum Eigenvalue = \(\frac{\text{Sum of Element in to Matrix B}}{N}\)
\[
\frac{3,0566 + 3,1024 + 3,1619}{3} = 3,1069
\]

\(\text{MEV} = 3.1069\)

d. Looking Consistency Index = \(\frac{\text{MEV} - N}{N - 1}\)

\[
\text{Consistency Index} = \frac{3,1069 - 3}{3 - 1} = \frac{0,1069}{2} = 0,053
\]

\(\text{CI} = 0.053\)

e. Search the value random index (see table)

<table>
<thead>
<tr>
<th>The Order's Matrix (N)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>The random</td>
<td>0.00</td>
<td>0.00</td>
<td>0.58</td>
<td>0.90</td>
<td>1.12</td>
<td>1.24</td>
<td>1.32</td>
<td>1.41</td>
<td>1.45</td>
<td>1.49</td>
</tr>
</tbody>
</table>

For \(N = 3\), then the value random indeknya = 0.58

f. Looking Consistency ratio = \(\frac{\text{CI}}{\text{RI}}\)

\[
\text{Consistency ratio} = \frac{0,053}{0,58} = 0,09
\]

\(\text{CR} = 0.09\). It turned out that the results are continuously because the \(\text{CR} (0.09) < \text{RI} (0.10)\)

There are three price criteria of alternative. The great weight priority and discussion of the three sub also after the synthesis produces a priority alternative as follows:

- **National** = \(0.25 \times 0.5366 = 0.135\)
- **Psychological** = \(0.25 \times 0.2909 = 0.073\)
- **Economic** = \(0.25 \times 0.1724 = 0.043\)
After the weight of priorities alternative price criteria, formed a hierarchy of students in vote for candidates of the Mayor of Bandarlampung criteria on alternative price and was summed up in the picture 1.5

Picture 1.5 Hierarchy Decisions Based On Alternative Price In Vote For The Candidate Of The Mayor Of Bandarlampung

Vote For the candidates of the Mayor of Bandar Lampung

Price

Priority I National (0,135)

Priority II Psychological (0,073)

Priority III Economic (0,043)

Then, doing count criteria alternative promotions in making a decision to vote for candidates of the Mayor of Bandarlampung, namely ads, broadcasting, public relations and direct mail must be a priority to the three for respondents in vote for the candidates of the mayor.

After assessment comparisons have been incorporated in matrix above, to get a matrix must be done price measure. The results are:

1. Geometriks Mean of 100 matrixes student assessment

$$GM_{12} = \sqrt[n]{X_1 \times X_2 \times X_3 \times X_4 \times \ldots \times X_n} = \sqrt[10]{8.6329 \times 10^{-34}} = 0.467$$

$$GM_{13} = \sqrt[n]{X_1 \times X_2 \times X_3 \times X_4 \times \ldots \times X_n} = \sqrt[10]{1.3322 \times 10^{-31}} = 0.4911$$

$$GM_{14} = \sqrt[n]{X_1 \times X_2 \times X_3 \times X_4 \times \ldots \times X_n} = \sqrt[10]{2.9007 \times 10^{-53}} = 0.4514$$
After the count matrixes comparison in pairs from the answer respondents, then make matrixes geometry mean of 100 matrixes assessment in pairs respondents and the result was summed up in the table 1.7

Table 1.7 Geometriks Mean of 100 Matrix student assessment

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Ads</th>
<th>Broadcasting</th>
<th>PR</th>
<th>Direct Mail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ads</td>
<td>1</td>
<td>0.467</td>
<td>0.4911</td>
<td>0.4514</td>
</tr>
<tr>
<td>Broadcasting</td>
<td>2.1411</td>
<td>1</td>
<td>0.4662</td>
<td>0.4257</td>
</tr>
<tr>
<td>PR</td>
<td>2.0358</td>
<td>2.1793</td>
<td>1</td>
<td>0.443</td>
</tr>
<tr>
<td>Direct Mail</td>
<td>2.1908</td>
<td>2.2742</td>
<td>2.3056</td>
<td>1</td>
</tr>
<tr>
<td>Number of</td>
<td>7.3677</td>
<td>5.9205</td>
<td>4.2629</td>
<td>2.3201</td>
</tr>
</tbody>
</table>

By doing assessment is relative in every cell in a way to each cell is divided by the number of each has columns then, will be obtained the relative per cell. Finally in each factor horizontally have received a combined total weight and sought his priorities.
Table 1.8. Weight Matrix Assessment Comparison in pairs Alternative Our

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Assessment</th>
<th>Number of</th>
<th>The priority</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ad</td>
<td>Broadcasting</td>
<td>PR</td>
</tr>
<tr>
<td>Ad</td>
<td>0.14</td>
<td>0.08</td>
<td>0.12</td>
</tr>
<tr>
<td>Broadcasting</td>
<td>0.29</td>
<td>0.17</td>
<td>0.11</td>
</tr>
<tr>
<td>PR</td>
<td>0.28</td>
<td>0.37</td>
<td>0.23</td>
</tr>
<tr>
<td>Direct Mail</td>
<td>0.30</td>
<td>0.38</td>
<td>0.54</td>
</tr>
<tr>
<td>Number of</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

2. The trial consistency matrix

a. Looking for value \([A] = \text{matrix} \times \text{weight priority}\)

\[
\begin{bmatrix}
1 & 0.467 & 0.4911 & 0.4514 \\
2.1411 & 1 & 0.4662 & 0.4257 \\
2.0358 & 2.1793 & 1 & 0.443 \\
2.1908 & 2.2742 & 2.3056 & 1
\end{bmatrix}
\times
\begin{bmatrix}
0.13 \\
0.19 \\
0.27 \\
0.41
\end{bmatrix}
= \begin{bmatrix}
0.5369 \\
0.8629 \\
1.4453 \\
0.9055
\end{bmatrix}
\]

b. Looking for vektor \(B = \frac{\text{Vektor}[A]}{\text{Weight Priority}}\)

\[
\begin{bmatrix}
0.5369 \\
0.8629 \\
1.4453 \\
0.9055
\end{bmatrix}
= \begin{bmatrix}
4.0954 \\
4.5877 \\
5.4034 \\
2.1908
\end{bmatrix}
\]

c. Looking for Maximum Eigenvalue = \(\frac{\text{Sum of Element in to Matrik B}}{N}\)

Maximum Eigenvalue = \(\frac{4.0954 + 4.5877 + 5.4034 + 2.1908}{4} = 4.0693\)

MEV = 4.0693

d. Looking for Consistency Index = \(\frac{\text{MEV} - N}{N - 1}\)

Consistency Index = \(\frac{4.0693 - 4}{4 - 1} = \frac{0.0693}{3} = 0.0231\)

CI = 0.0231
e. Search the value random index (see table)

<table>
<thead>
<tr>
<th>The Order's Matrix (N)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>The random</td>
<td>0.00</td>
<td>0.00</td>
<td>0.58</td>
<td>0.90</td>
<td>1.12</td>
<td>1.24</td>
<td>1.32</td>
<td>1.41</td>
<td>1.45</td>
<td>1.49</td>
</tr>
</tbody>
</table>

For N = 4, then the value random indeknya = 0.90

f. Looking for Consistency ratio = \(\frac{CI}{RI} \)

Consistency ratio \(\frac{0.0231}{0.90} = 0.0257 \)

CR = 0.0257. It turned out that the results are continuously because the CR (0.0257) < RI (0.10)

There are four alternative of criteria promotion. The Great weight priority and discussion of the three sub. Also after the synthesis produces a priority alternative, namely

Direct Mail = 0.17 \times 0.41 = 0.0697

PR = 0.17 \times 0.27 = 0.0459

Broadcasting = 0.17 \times 0.19 = 0.0323

Ad = 0.17 \times 0.13 = 0.0221

Once known the weighting of priorities criteria alternative promotion, formed a hierarchy of students in vote the candidates of the Mayor of Bandarlampung criteria on alternative promotion and was summed up in the picture 1.6
The criteria for alternative products in making a decision to vote for the candidate of the Mayor of Bandarlampung namely party image, leader image, and manifesto must be a priority to four for respondents in choosing the candidate of the mayor.

After assessment comparisons have been incorporated in matrix above, to get a matrix must be done price measure. The results are:

1. Geometriks Mean of 100 matrixes student assessment

\[\text{GM}_{12} = \sqrt[n]{X_1 \times X_2 \times X_3 \times X_4 \times \ldots \times X_n} = 0.052227E-39 = 0.4141 \]

\[\text{GM}_{13} = \sqrt[n]{X_1 \times X_2 \times X_3 \times X_4 \times \ldots \times X_n} = 0.049729E-36 = 0.4435 \]

\[\text{GM}_{21} = \sqrt[n]{X_1 \times X_2 \times X_3 \times X_4 \times \ldots \times X_n} = 0.019147E+38 = 2.4144 \]

\[\text{GM}_{23} = \sqrt[n]{X_1 \times X_2 \times X_3 \times X_4 \times \ldots \times X_n} = 0.033153E-37 = 0.4317 \]
After the count matrixes comparison in pairs from the answer respondents, then make matrixes geometry mean of 100 matrixes assessment in pairs respondents and the result was summed up in the table 1.9

Table 1.9 Geometriks Mean of 100 Matrix student assessment

<table>
<thead>
<tr>
<th>The criteria</th>
<th>Party Image</th>
<th>Leader Image</th>
<th>Manifesto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Party Image</td>
<td>1</td>
<td>0.4141</td>
<td>0.4435</td>
</tr>
<tr>
<td>Leader Image</td>
<td>2.4144</td>
<td>1</td>
<td>0.4317</td>
</tr>
<tr>
<td>Manifesto</td>
<td>2.3162</td>
<td>2.3079</td>
<td>1</td>
</tr>
<tr>
<td>Sum</td>
<td>5.7306</td>
<td>3.722</td>
<td>1.8752</td>
</tr>
</tbody>
</table>

By doing assessment is relative in every cell in a way to each cell is divided by the number of each has columns then, will be obtained the relative per cell. Finally in each factor horizontally have received a combined total weight and sought his priorities.

Table 1.10 Matrix Assessment weight Comparison in pairs Alternative products

<table>
<thead>
<tr>
<th>The criteria</th>
<th>Party Image</th>
<th>Leader Image</th>
<th>Manifesto</th>
<th>Sum</th>
<th>The priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Party Image</td>
<td>0.1745</td>
<td>0.1113</td>
<td>0.2365</td>
<td>0.5223</td>
<td>0.1741</td>
</tr>
<tr>
<td>Leader Image</td>
<td>0.4213</td>
<td>0.2687</td>
<td>0.2302</td>
<td>0.9202</td>
<td>0.3067</td>
</tr>
<tr>
<td>Manifesto</td>
<td>0.4042</td>
<td>0.6201</td>
<td>0.5333</td>
<td>1.5575</td>
<td>0.5192</td>
</tr>
<tr>
<td>Sum</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

2. The trial consistency matrix

a. Looking for value \([A] = \text{matrix} \times \text{weight priority}\)

\[
\begin{bmatrix}
1 & 0.4141 & 0.4435 \\
2.4144 & 1 & 0.4317 \\
2.3162 & 2.3079 & 1
\end{bmatrix}
\times
\begin{bmatrix}
0.1741 \\
0.3067 \\
0.5192
\end{bmatrix}
= \begin{bmatrix}
0.5314 \\
0.9512 \\
1.6303
\end{bmatrix}
\]

b. Looking for \(\text{Vektor } B = \frac{\text{Vektor } A}{\text{Weight Priority}}\)
\[
\begin{bmatrix}
0.5314 & 0.9512 & 1.6303 \\
0.1741 & 0.3067 & 0.5192
\end{bmatrix} = \begin{bmatrix}
3.0522 & 3.1010 & 3.1402
\end{bmatrix}
\]

c. Looking for Maximum Eigenvalue = $\frac{\text{Sum of Element in to Matrik B}}{N}$

\[
\frac{3.0522 + 3.1010 + 3.1402}{3} = 3.0978
\]

$\text{MEV} = 3.0978$

d. Looking for Consistency Index = $\frac{\text{MEV} - N}{N - 1}$

\[
\text{Consistency Index} = \frac{3.0978 - 3}{3 - 1} = \frac{0.0978}{2} = 0.0489
\]

$\text{CI} = 0.0489$

e. Search the value random index

<table>
<thead>
<tr>
<th>The Order's Matrix (N)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>The random</td>
<td>0.00</td>
<td>0.00</td>
<td>0.58</td>
<td>0.90</td>
<td>1.12</td>
<td>1.24</td>
<td>1.32</td>
<td>1.41</td>
<td>1.45</td>
<td>1.49</td>
</tr>
</tbody>
</table>

For $N = 3$, then the value random indeknya = 0.58

f. Looking for Consistency ratio = $\frac{\text{CI}}{\text{RI}}$

\[
\text{Consistency ratio} = \frac{0.0489}{0.58} = 0.0843
\]

$\text{CR} = 0.0843$. It turned out that the results are continuously because the CR (0.0843) < RI (0.10)

The amount of discussion of priority and weighting of the third sub criterion, after synthesis produces the following alternative priority, namely:

Manifesto = $0.09 \times 0.5192 = 0.0467$

Leader Image = $0.09 \times 0.3067 = 0.0276$
After known weights priorities of criteria alternative products, next formed 1 hierarchy decision student in vote for candidates mayor bandarlampung based on criteria an alternative product and is summed up in the figure 1.7

Picture 1.7 Hierarchy Decisions Based On Alternative Products In Vote For The Candidate Of The Mayor Of Bandarlampung

Testing Consistency Industry hierarchy

After the obtained by the index consistency that many period with the elements in the criteria, the next step is doing multiple vector between vector priority level criteria as vector lines with vector index consistency from level as alternative vector column results of the multiplication is one point and then added with the index consistency level criteria and the result is called M. Calculated index advanced random industry in the same way, only every index consistency is replaced with the index vary depending on size random matrix. From this operation is obtained index random hierarchy as a whole is symbolised by M'. Thus the ratio will be found consistency as a whole with share index Consistency Industry (M) with the index Random Industry (M', which can be written:
CRH = \frac{M}{M'}

Where is the ratio CRH Consistency hierarchy. Like the ratio consistency locally, high CRH that can be accepted is inconsistency 10% downhill. The result of the ratio consistency hierarchy can be seen in the count as follows:

The first step is to calculate index consistency industry (M)

The priority level 2 (criteria) : 0.49 0.25 0.17 0.09
Index consistency level 1 (the) : 0
Index consistency level 2 (criteria) : 0.051 0.053 0.0231 0.0489

\[M = 0 + [0.49, 0.25, 0.17, 0.09] \times \begin{bmatrix} 0.051 \\ 0.053 \\ 0.0231 \\ 0.0489 \end{bmatrix} \]

\[M = (0.49 \times 0.051) + (0.25 \times 0.053) + (0.17 \times 0.0231) + (0.09 \times 0.0489) = 0.0465 \]

The second count random index is

Random index level 1 (the) : 0
Random index level 2 (factors) : 0.58 0.58 0.90 0.58

\[M' = 0 + [0.49, 0.25, 0.17, 0.09] \times \begin{bmatrix} 0.58 \\ 0.58 \\ 0.90 \\ 0.58 \end{bmatrix} \]

\[M = (0.49 \times 0.58) + (0.25 \times 0.58) + (0.17 \times 0.90) + (0.09 \times 0.58) = 0.6344 \]

So the consistency hierarchy ratio (CRH)

\[CRH = \frac{M}{M'} \]

\[CRH = \frac{0.0465}{0.6344} = 0.0732 \]
The consistency is good enough because it does not exceed 10 percent requirements, so its consistency hierarchy industry can be accepted, CRH (0.0732 < 0.1)

After proven that all hierarchy having the consistency of good then the final result calculation method analysis hierarchy process (AHP) yield one hierarchy decision for college students in vote for candidates mayor bandarlampung program based on political marketing mixed precisely and will help the candidate to did one program political campaigns according to the order priority.

The diagram of students in vote for the candidates of the Mayor of Bandarlampung that is summarized in the figure 1.8

Figure 1.8 Hierarchy Final Decision To Vote The Candidates Of The Mayor Based On The Political Marketing Mix

- **Place**
 - First Priority
 - Leader tour
 - First Priority
 - Weight = 0.269
 - Second Priority
 - National
 - First Priority
 - Weight = 0.135
 - Product
 - Fourth Priority
 - Weight = 0.09

- **Price**
 - Second Priority
 - National
 - Second Priority
 - Weight = 0.073

- **Promotion**
 - Third Priority
 - Economic
 - Third Priority
 - Weight = 0.043

- **Product**
 - Fourth Priority
 - Ads
 - Fourth Priority
 - Weight = 0.0221
Based on the results of the calculations concerning the determination of the most significant criteria against the decision of the student in selecting a candidate for mayor of Bandarlampung program based on political marketing mix is obtained criterion place on an alternative leader tour has the highest priority weighting, i.e. 0.269. Price criteria on national alternatives have highest priority weighting i.e. 0.135. Promotion criteria on direct mail alteratives have highest priority weighting i.e 0.0697. Product criteria on manifesto alternative have highest priority weighting i.e 0.0467. So the weight of the highest priority from the results of the analysis of the criteria is the leader of the tour.

Hierarchy decision student in vote for candidates mayor of Bandarlampung as input for the candidate to concepts political marketing mixed effective by managing program campaign based on a hierarchy decision by focusing on a visit to all proselyte and social organization as orphanage, panti decrepit, pondok boarding and others, and eventually will attract sympathetic people to vote for candidates election in a contest.

CONCLUSION

Conclusion on the research result is analytical hierarchy process (AHP) prove variable place is criteria main priority for college students in making decisions in phase mayor bandarlampung, criteria second priority is the price, criteria the third priority is promotion and criteria priority last is the product.
REFERENCE

DISCLOSURE

QUESTIONNAIRE

Please be filled with honest and True

Respondents information

(Name in ID card) :

Gender :

Address in Bandar Lampung :

Age :

If you have been Active in organise?

A. Ever

B. Never

In a week, how often do you follow the news by listening to radio, watching television or reading newspapers?

A. Never

B. It is very rare (1 to 9 times)

C. Rarely (Between 10 reaching your 15 times)

D. Often (between 16 to 20 times)

E. It is very often (more than 20 times)

The attitude you in the Election Mayor of Bandarlampung are:

A. Actively will encourage people to support one of the candidates Mayor Bandarlampung

B. I will perform duties as citizens to participate in Bandarlampung Mayor Election

C. For me the election is the thing that is not useful
Filling Guide

In this questionnaire researchers want to know the picture assessment of your students as well as having knowledge about candidates mayor and vice mayor.

How to filling
1. Give the score your assessment at the box that has been provided.
2. Every statement separated by words and
3. Assessment declared in item 1 - 9 in each of them with a clear as follows:

<table>
<thead>
<tr>
<th>High interest</th>
<th>Definition</th>
<th>Note:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Equally important</td>
<td>Both the same importance</td>
</tr>
<tr>
<td>3</td>
<td>A little bit more important</td>
<td>The claim that a little bit more important than the others</td>
</tr>
<tr>
<td>5</td>
<td>More important</td>
<td>The claim that one is very important rather than the other</td>
</tr>
<tr>
<td>7</td>
<td>It is more important</td>
<td>The claim that one is more important than the others</td>
</tr>
<tr>
<td>9</td>
<td>It is imperative more important</td>
<td>The claim that the absolute much more important than other statements</td>
</tr>
<tr>
<td>2, 4, 6, 8</td>
<td></td>
<td>The values between between the two Directors, near</td>
</tr>
</tbody>
</table>

An example filling:

<table>
<thead>
<tr>
<th>No</th>
<th>The statement</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The political vision and mission who propose candidates for mayor’s press candidates in the radio or TV debate in the event</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Press candidates in the radio or TV debate in the event with significant costs candidate campaign</td>
<td>7</td>
</tr>
</tbody>
</table>

This means that:

- The political vision and mission who propose candidates for mayor of more important (5) with press candidates in the radio or TV debate in the event
- Press candidates in the radio or TV debate in the event is more important (7) with significant costs candidate campaign.
Based on the claim in under this, please give your assessment on the column that has been provided:

<table>
<thead>
<tr>
<th>No</th>
<th>The Mayor of Criteria Based on Political Marketing mixed</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Personal quality nominate himself as the mayor’s campaign activities directly and the campaign offline</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Personal quality nominate himself as the mayor’s price trust and confidence to the candidate mayor</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Personal quality nominate himself as the mayor to visit The intensity candidate mayor and the ability to communicate</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Campaign activities directly and the campaign offline with trust and confidence to the candidate mayor</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Campaign activities directly on The intensity and the campaign offline visit mayor candidates and their ability to communicate</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Rates trust and confidence to the candidate mayor to visit The intensity candidate mayor and the ability to communicate</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No</th>
<th>The claim of Sub Criteria Mayor Based products</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Capability vision and mission, ideology and track record the party with the characteristic personal Mayor candidate</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Capability vision and mission, ideology and track record the party with the hope that the political promise</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Personal characteristics Mayor candidate with the hope that the political promise</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No</th>
<th>The claim of Sub Criteria Mayor Based on Our</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The ad, toolkit and the campaign on the campus with the Implementation candidates’ debate</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>The ad, toolkit and the campaign in campus with the candidate a friendship with all layers of society and the media.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>The ad, toolkit and the campaign in campus with the candidate who sending short messages (SMS)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Candidates’ debate in the Candidates to enter into a relationship with all layers of society and the media.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Candidates’ debate in the Candidates that send short message service (SMS)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Candidates to enter into a relationship with all layers of society and the media with the candidate who sending short messages (SMS)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No</th>
<th>The claim of Sub Criteria Mayor Based on the cost</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Use wealth during the same general election with comfortable background ethical, religion and education</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Use wealth during the same general election with the ability to lift image and pride</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>The convenient to background ethical, religion and education with the ability to lift the image and pride</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>The claim of Sub Criteria Mayor Based Place</td>
<td>Assessment</td>
</tr>
<tr>
<td>----</td>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>1</td>
<td>The presence candidates in the region and contributed to the region with The intensity dialog to all layers of society, the spread successful team and the sympathizers</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>The presence candidates in the region and contributed to the region with a visit to all of the adherents religion and social organizations</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>The intensity dialog to all layers of society, the spread successful team and sympathisers with a visit to all of the adherents religion and social organizations</td>
<td></td>
</tr>
</tbody>
</table>

Thank you for your cooperation